diff options
author | Omniscient <omniscient.oce@gmail.com> | 2024-04-03 21:36:19 +1100 |
---|---|---|
committer | Omniscient <omniscient.oce@gmail.com> | 2024-04-03 21:36:19 +1100 |
commit | 48888ed47f347ac189a53fba6b8d1d8abb245800 (patch) | |
tree | 656e59fb52f6fdb0f15dd5ec3a9c7d8cb537dcae /src/resources | |
parent | 77cf094a317bae2836547b6984f9a1567173c78d (diff) |
copy code from previous repo
Diffstat (limited to 'src/resources')
-rw-r--r-- | src/resources/gltf.c | 293 |
1 files changed, 292 insertions, 1 deletions
diff --git a/src/resources/gltf.c b/src/resources/gltf.c index b646f58..2f5ebc7 100644 --- a/src/resources/gltf.c +++ b/src/resources/gltf.c @@ -1 +1,292 @@ -// TODO: Port code from old repo
\ No newline at end of file +// TODO: Port code from old repo + +/* +struct face { + cgltf_uint indices[3]; +}; + +// TODO: Brainstorm how I can make this simpler and break it up into more testable pieces + +bool model_load_gltf(const char *path, model *out_model) { + TRACE("Load GLTF %s", path); + + // Setup temp arrays + kitc_darray *tmp_positions = kitc_darray_new(sizeof(vec3), 1000); + kitc_darray *tmp_normals = kitc_darray_new(sizeof(vec3), 1000); + kitc_darray *tmp_uvs = kitc_darray_new(sizeof(vec2), 1000); + + // may as well just init with max capacity as we're just gonna free at end of this function anyway + bh_material_darray *materials = bh_material_darray_new(MAX_MATERIALS); + CASSERT(materials->len == 0); + + cgltf_options options = {0}; + cgltf_data *data = NULL; + cgltf_result result = cgltf_parse_file(&options, path, &data); + if (result == cgltf_result_success) { + DEBUG("gltf loaded succesfully"); + + cgltf_load_buffers(&options, data, path); + DEBUG("loaded buffers"); + + // -- Load materials. + // Each mesh will be handed a material + TRACE("Num materials %d", data->materials_count); + out_model->num_materials = data->materials_count; + + for (int m = 0; m < data->materials_count; m++) { + cgltf_material gltf_material = data->materials[m]; + bh_material our_material = {0}; + + str8 name = str8_copy(gltf_material.name); + printf("Material name %s\n", name.buf); + our_material.name = name; + + cgltf_pbr_metallic_roughness pbr = gltf_material.pbr_metallic_roughness; + if (gltf_material.has_pbr_metallic_roughness) { + // we will use base color texture like blinn phong + cgltf_texture_view diff_tex = pbr.base_color_texture; + strcpy(our_material.diffuse_tex_path, diff_tex.texture->image->uri); + } + + bh_material_darray_push(materials, our_material); + } + + // -- Load animations. + TRACE("Num animations %d", data->animations_count); + out_model->num_animations = data->animations_count; + for (int anim_idx = 0; anim_idx < data->animations_count; anim_idx++) { + cgltf_animation animation = data->animations[anim_idx]; + animation_clip our_animation = {0}; + + // loop through each channel (track) + for (int c = 0; c < animation.channels_count; c++) { + // each channel (track) has a target and a sampler + // for the time being we assume the target is the model itself + cgltf_animation_channel channel = animation.channels[c]; + animation_track our_track = {0}; + our_track.interpolation = interpolation_fn_from_gltf(channel.sampler->interpolation); + our_track.property = anim_prop_from_gltf(channel.target_path); + + // get the actual data out via the "accessor" + // input will be the times + + // Keyframe times + size_t n_frames = channel.sampler->input->count; + our_track.num_keyframes = n_frames; + f32 *times = malloc(sizeof(f32) * n_frames); + our_track.keyframe_times = times; + CASSERT_MSG(channel.sampler->input->component_type == cgltf_component_type_r_32f, + "Expected animation sampler input component to be type f32 (keyframe times)"); + cgltf_accessor_unpack_floats(channel.sampler->input, times, channel.sampler->input->count); + + // printf("keyframe times[\n"); + // for (int i = 0; i < n_frames; i++) { + // printf(" %f\n", times[i]); + // } + // printf("]\n"); + + // Data! + if (channel.target_path == cgltf_animation_path_type_rotation) { + CASSERT(channel.sampler->output->component_type == cgltf_component_type_r_32f); + CASSERT(channel.sampler->output->type == cgltf_type_vec4); + } + + our_track.keyframes = malloc(sizeof(keyframe_data) * n_frames); + for (cgltf_size v = 0; v < channel.sampler->output->count; ++v) { + quat rot; + cgltf_accessor_read_float(channel.sampler->output, v, &rot.x, 4); + // vectors[v] = rot; + // printf("Quat %f %f %f %f\n", rot.x, rot.y, rot.z, rot.w); + our_track.keyframes[v].rotation = rot; + } + + our_track.min_time = channel.sampler->input->min[0]; + our_track.max_time = channel.sampler->input->max[0]; + + // printf("min time: %f max time %f\n", our_track.min_time, our_track.max_time); + + animation_track_darray_push(&our_animation.tracks, our_track); + } + + out_model->animations[anim_idx] = our_animation; + } + + // Load meshes + TRACE("Num meshes %d", data->meshes_count); + out_model->num_meshes = data->meshes_count; + + for (int m = 0; m < data->meshes_count; m++) { + // at the moment we only handle one primitives per mesh + // CASSERT(data->meshes[m].primitives_count == 1); + + // Load vertex data from FIRST primitive only + cgltf_primitive primitive = data->meshes[m].primitives[0]; + DEBUG("Found %d attributes", primitive.attributes_count); + for (int a = 0; a < data->meshes[m].primitives[0].attributes_count; a++) { + cgltf_attribute attribute = data->meshes[m].primitives[0].attributes[a]; + if (attribute.type == cgltf_attribute_type_position) { + TRACE("Load positions from accessor"); + + cgltf_accessor *accessor = attribute.data; + CASSERT(accessor->component_type == cgltf_component_type_r_32f); + CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex positions should be a vec3"); + + for (cgltf_size v = 0; v < accessor->count; ++v) { + vec3 pos; + cgltf_accessor_read_float(accessor, v, &pos.x, 3); + kitc_darray_push(tmp_positions, &pos); + } + + } else if (attribute.type == cgltf_attribute_type_normal) { + TRACE("Load normals from accessor"); + + cgltf_accessor *accessor = attribute.data; + CASSERT(accessor->component_type == cgltf_component_type_r_32f); + CASSERT_MSG(accessor->type == cgltf_type_vec3, "Normal vectors should be a vec3"); + + for (cgltf_size v = 0; v < accessor->count; ++v) { + vec3 pos; + cgltf_accessor_read_float(accessor, v, &pos.x, 3); + kitc_darray_push(tmp_normals, &pos); + } + + } else if (attribute.type == cgltf_attribute_type_texcoord) { + TRACE("Load texture coordinates from accessor"); + cgltf_accessor *accessor = attribute.data; + CASSERT(accessor->component_type == cgltf_component_type_r_32f); + CASSERT_MSG(accessor->type == cgltf_type_vec2, "Texture coordinates should be a vec2"); + + for (cgltf_size v = 0; v < accessor->count; ++v) { + vec2 tex; + bool success = cgltf_accessor_read_float(accessor, v, &tex.x, 2); + if (!success) { + ERROR("Error loading tex coord"); + } + kitc_darray_push(tmp_uvs, &tex); + } + } else if (attribute.type == cgltf_attribute_type_joints) { + // handle joints + + } else { + WARN("Unhandled cgltf_attribute_type: %s. skipping..", attribute.name); + } + } + + // Create mesh + mesh mesh; + mesh.vertices = + kitc_darray_new(sizeof(mesh_vertex), data->meshes[m].primitives[0].attributes_count); + + // Flatten faces from indices if present otherwise push vertices verbatim + cgltf_accessor *indices = primitive.indices; + if (primitive.indices > 0) { + mesh.has_indices = true; + + kitc_darray *element_indexes = kitc_darray_new(sizeof(cgltf_uint), indices->count); + TRACE("Indices count %ld\n", indices->count); + for (cgltf_size i = 0; i < indices->count; ++i) { + cgltf_uint ei; + cgltf_accessor_read_uint(indices, i, &ei, 1); + kitc_darray_push(element_indexes, &ei); + } + + kitc_darray_iter indices_iter = kitc_darray_iter_new(element_indexes); + cgltf_uint *cur; + while ((cur = kitc_darray_iter_next(&indices_iter))) { + mesh_vertex vert; + memcpy(&vert.position, &((vec3 *)tmp_positions->data)[*cur], sizeof(vec3)); + memcpy(&vert.normal, &((vec3 *)tmp_normals->data)[*cur], sizeof(vec3)); + memcpy(&vert.tex_coord, &((vec2 *)tmp_uvs->data)[*cur], sizeof(vec2)); + kitc_darray_push(mesh.vertices, &vert); + // mesh_vertex_debug_print(vert); + } + // printf("indices: %ld, positions: %ld\n", kitc_darray_len(element_indexes), + kitc_darray_free(element_indexes); + } else { + mesh.has_indices = false; + + bool calc_normals = false; + if (kitc_darray_len(tmp_normals) == 0) { + TRACE("No normals data is present. Normals will be calculated for you."); + calc_normals = true; + } + for (int v = 0; v < kitc_darray_len(tmp_positions); v++) { + mesh_vertex vert; + memcpy(&vert.position, &((vec3 *)tmp_positions->data)[v], sizeof(vec3)); + if (!calc_normals) { + memcpy(&vert.normal, &((vec3 *)tmp_normals->data)[v], sizeof(vec3)); + } + memcpy(&vert.tex_coord, &((vec2 *)tmp_uvs->data)[v], sizeof(vec2)); + kitc_darray_push(mesh.vertices, &vert); + } + + if (calc_normals) { + if (mesh.has_indices) { + // generate_normals_nonindexed(mesh.vertices); + } else { + generate_normals_nonindexed(mesh.vertices); + } + } + } + + // Material + if (primitive.material != NULL) { + for (int i = 0; i < bh_material_darray_len(materials); i++) { + if (strcmp(primitive.material->name, cstr(materials->data->name))) { + TRACE("Found material"); + mesh.material_index = i; + break; + } + } + } + + // mesh.material_index = 0; // TODO: make sure DEFAULT_MATERIAL is added at material index 0 + // TODO: material handling + mesh.material_index = bh_material_darray_len(materials) - 1; + + calc_mesh_bounding_box(&mesh); + // out_model->meshes.data[m] = mesh; + mesh_darray_push(&out_model->meshes, mesh); + + kitc_darray_clear(tmp_positions); + kitc_darray_clear(tmp_normals); + kitc_darray_clear(tmp_uvs); + } + // End Load meshes + + // Load animations + DEBUG("Num animations %d", data->animations_count); + out_model->num_animations = data->animations_count; + + // End Load animations + + cgltf_free(data); + } else { + ERROR("Load failed"); + kitc_darray_free(tmp_positions); + kitc_darray_free(tmp_normals); + kitc_darray_free(tmp_uvs); + return false; + } + + for (int i = 0; i < materials->len; i++) { + out_model->materials[i] = materials->data[i]; + } + + calc_model_bounding_box(out_model); + + DEBUG("Num meshes %d", out_model->num_meshes); + DEBUG("Num materials %d", out_model->num_materials); + DEBUG("Num animations %d", out_model->num_animations); + + CASSERT(out_model->num_materials == 1); + + kitc_darray_free(tmp_positions); + kitc_darray_free(tmp_normals); + kitc_darray_free(tmp_uvs); + bh_material_darray_free(materials); + + TRACE("Finished loading GLTF"); + return true; +} +*/
\ No newline at end of file |