summaryrefslogtreecommitdiff
path: root/src/resources/gltf.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/resources/gltf.c')
-rw-r--r--src/resources/gltf.c765
1 files changed, 764 insertions, 1 deletions
diff --git a/src/resources/gltf.c b/src/resources/gltf.c
index b646f58..81992d1 100644
--- a/src/resources/gltf.c
+++ b/src/resources/gltf.c
@@ -1 +1,764 @@
-// TODO: Port code from old repo \ No newline at end of file
+#include <assert.h>
+#include <stdlib.h>
+#include <string.h>
+#include "animation.h"
+#include "core.h"
+#include "defines.h"
+#include "file.h"
+#include "loaders.h"
+#include "log.h"
+#include "maths.h"
+#include "maths_types.h"
+#include "mem.h"
+#include "path.h"
+#include "render.h"
+#include "render_backend.h"
+#include "render_types.h"
+#include "str.h"
+
+#define CGLTF_IMPLEMENTATION
+#include <cgltf.h>
+
+struct face {
+ cgltf_uint indices[3];
+};
+typedef struct face face;
+
+KITC_DECL_TYPED_ARRAY(vec3)
+KITC_DECL_TYPED_ARRAY(vec2)
+KITC_DECL_TYPED_ARRAY(u32)
+KITC_DECL_TYPED_ARRAY(vec4u)
+KITC_DECL_TYPED_ARRAY(vec4)
+KITC_DECL_TYPED_ARRAY(face)
+// KITC_DECL_TYPED_ARRAY(joint)
+
+bool model_load_gltf_str(const char *file_string, const char *filepath, str8 relative_path,
+ model *out_model, bool invert_textures_y);
+
+model_handle model_load_gltf(struct core *core, const char *path, bool invert_texture_y) {
+ size_t arena_size = 1024;
+ arena scratch = arena_create(malloc(arena_size), arena_size);
+
+ TRACE("Loading model at Path %s\n", path);
+ path_opt relative_path = path_parent(&scratch, path);
+ if (!relative_path.has_value) {
+ WARN("Couldnt get a relative path for the path to use for loading materials & textures later");
+ }
+ const char *file_string = string_from_file(path);
+
+ model model = { 0 };
+ model.name = str8_cstr_view(path);
+ model.meshes = mesh_darray_new(1);
+ model.materials = material_darray_new(1);
+
+ bool success =
+ model_load_gltf_str(file_string, path, relative_path.path, &model, invert_texture_y);
+
+ if (!success) {
+ FATAL("Couldnt load OBJ file at path %s", path);
+ ERROR_EXIT("Load fails are considered crash-worthy right now. This will change later.\n");
+ }
+
+ u32 index = model_darray_len(core->models);
+ model_darray_push(core->models, model);
+
+ arena_free_all(&scratch);
+ arena_free_storage(&scratch);
+ return (model_handle){ .raw = index };
+}
+
+void assert_path_type_matches_component_type(cgltf_animation_path_type target_path,
+ cgltf_accessor *output) {
+ if (target_path == cgltf_animation_path_type_rotation) {
+ assert(output->component_type == cgltf_component_type_r_32f);
+ assert(output->type == cgltf_type_vec4);
+ }
+}
+
+// TODO: Brainstorm how I can make this simpler and break it up into more testable pieces
+
+bool model_load_gltf_str(const char *file_string, const char *filepath, str8 relative_path,
+ model *out_model, bool invert_textures_y) {
+ TRACE("Load GLTF from string");
+
+ // Setup temps
+ vec3_darray *tmp_positions = vec3_darray_new(1000);
+ vec3_darray *tmp_normals = vec3_darray_new(1000);
+ vec2_darray *tmp_uvs = vec2_darray_new(1000);
+ vec4u_darray *tmp_joint_indices = vec4u_darray_new(1000);
+ vec4_darray *tmp_weights = vec4_darray_new(1000);
+ joint_darray *tmp_joints = joint_darray_new(256);
+ vertex_bone_data_darray *tmp_vertex_bone_data = vertex_bone_data_darray_new(1000);
+
+ cgltf_options options = { 0 };
+ cgltf_data *data = NULL;
+ cgltf_result result = cgltf_parse_file(&options, filepath, &data);
+ if (result != cgltf_result_success) {
+ WARN("gltf load failed");
+ // TODO: cleanup arrays(allocate all from arena ?)
+ return false;
+ }
+
+ cgltf_load_buffers(&options, data, filepath);
+ DEBUG("loaded buffers");
+
+ // --- Skin
+ size_t num_skins = data->skins_count;
+ bool is_skinned = false;
+ if (num_skins == 1) {
+ is_skinned = true;
+ } else if (num_skins > 1) {
+ WARN("GLTF files with more than 1 skin are not supported");
+ return false;
+ }
+
+ if (is_skinned) {
+ cgltf_skin *gltf_skin = data->skins;
+ DEBUG("loading skin %s", gltf_skin->name);
+ size_t num_joints = gltf_skin->joints_count;
+ DEBUG("# Joints %d", num_joints);
+
+ cgltf_accessor *gltf_inverse_bind_matrices = gltf_skin->inverse_bind_matrices;
+
+ // for each one we'll spit out a joint
+ for (size_t i = 0; i < num_joints; i++) {
+ cgltf_node *joint_node = gltf_skin->joints[i];
+
+ joint joint_i = { .name = "testjoint" };
+ if (joint_node->children_count > 0 && !joint_node->has_translation &&
+ !joint_node->has_rotation) {
+ WARN("joint Node with index %d is the root node", i);
+ joint_i.transform_components = TRANSFORM_DEFAULT;
+ } else {
+ TRACE("Storing joint transform");
+ joint_i.transform_components = TRANSFORM_DEFAULT;
+ if (joint_node->has_translation) {
+ memcpy(&joint_i.transform_components.position, &joint_node->translation, 3 * sizeof(f32));
+ }
+ if (joint_node->has_rotation) {
+ memcpy(&joint_i.transform_components.rotation, &joint_node->rotation, 4 * sizeof(f32));
+ }
+ // TODO: support scaling as vec instead of float
+ }
+ joint_i.local_transform = transform_to_mat(&joint_i.transform_components);
+ cgltf_accessor_read_float(gltf_inverse_bind_matrices, i, &joint_i.inverse_bind_matrix.data[0],
+ 16);
+ joint_darray_push(tmp_joints, joint_i);
+ }
+ }
+
+ // --- Materials
+ TRACE("Num materials %d", data->materials_count);
+ size_t num_materials = data->materials_count;
+ for (size_t m = 0; m < num_materials; m++) {
+ cgltf_material gltf_material = data->materials[m];
+ material our_material = DEFAULT_MATERIAL;
+
+ strcpy(our_material.name, gltf_material.name);
+
+ cgltf_pbr_metallic_roughness pbr = gltf_material.pbr_metallic_roughness;
+ if (gltf_material.has_pbr_metallic_roughness) {
+ // we will use base color texture like blinn phong
+ cgltf_texture_view diff_tex_view = pbr.base_color_texture;
+
+ char diffuse_map_path[1024];
+ snprintf(diffuse_map_path, sizeof(diffuse_map_path), "%s/%s", relative_path.buf,
+ diff_tex_view.texture->image->uri);
+
+ strcpy(our_material.diffuse_tex_path, diffuse_map_path);
+ texture diffuse_texture = texture_data_load(our_material.diffuse_tex_path, false);
+ texture_data_upload(&diffuse_texture);
+ our_material.diffuse_texture = diffuse_texture;
+
+ cgltf_texture_view specular_tex_view = pbr.metallic_roughness_texture;
+
+ char specular_map_path[1024];
+ snprintf(specular_map_path, sizeof(specular_map_path), "%s/%s", relative_path.buf,
+ specular_tex_view.texture->image->uri);
+
+ strcpy(our_material.specular_tex_path, specular_map_path);
+ texture specular_texture = texture_data_load(our_material.specular_tex_path, false);
+ texture_data_upload(&specular_texture);
+ our_material.specular_texture = specular_texture;
+ }
+
+ material_darray_push(out_model->materials, our_material);
+ }
+
+ // --- Meshes
+ TRACE("Num meshes %d", data->meshes_count);
+ size_t num_meshes = data->meshes_count;
+ for (size_t m = 0; m < num_meshes; m++) {
+ cgltf_primitive primitive = data->meshes[m].primitives[0];
+ DEBUG("Found %d attributes", primitive.attributes_count);
+ // DEBUG("Number of this primitive %d", primitive.)
+
+ for (int a = 0; a < data->meshes[m].primitives[0].attributes_count; a++) {
+ cgltf_attribute attribute = data->meshes[m].primitives[0].attributes[a];
+ if (attribute.type == cgltf_attribute_type_position) {
+ TRACE("Load positions from accessor");
+
+ cgltf_accessor *accessor = attribute.data;
+ assert(accessor->component_type == cgltf_component_type_r_32f);
+ // CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex positions should be a vec3");
+
+ TRACE("Loading %d vec3 components", accessor->count);
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ vec3 pos;
+ cgltf_accessor_read_float(accessor, v, &pos.x, 3);
+ vec3_darray_push(tmp_positions, pos);
+ }
+
+ } else if (attribute.type == cgltf_attribute_type_normal) {
+ TRACE("Load normals from accessor");
+
+ cgltf_accessor *accessor = attribute.data;
+ assert(accessor->component_type == cgltf_component_type_r_32f);
+ // CASSERT_MSG(accessor->type == cgltf_type_vec3, "Normal vectors should be a vec3");
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ vec3 pos;
+ cgltf_accessor_read_float(accessor, v, &pos.x, 3);
+ vec3_darray_push(tmp_normals, pos);
+ }
+
+ } else if (attribute.type == cgltf_attribute_type_texcoord) {
+ TRACE("Load texture coordinates from accessor");
+ cgltf_accessor *accessor = attribute.data;
+ assert(accessor->component_type == cgltf_component_type_r_32f);
+ // CASSERT_MSG(accessor->type == cgltf_type_vec2, "Texture coordinates should be a vec2");
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ vec2 tex;
+ bool success = cgltf_accessor_read_float(accessor, v, &tex.x, 2);
+ if (!success) {
+ ERROR("Error loading tex coord");
+ }
+ vec2_darray_push(tmp_uvs, tex);
+ }
+ } else if (attribute.type == cgltf_attribute_type_joints) {
+ TRACE("Load joint indices from accessor");
+ cgltf_accessor *accessor = attribute.data;
+ assert(accessor->component_type == cgltf_component_type_r_16u);
+ assert(accessor->type == cgltf_type_vec4);
+ vec4u joint_indices;
+ vec4 joints_as_floats;
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ cgltf_accessor_read_float(accessor, v, &joints_as_floats.x, 4);
+ joint_indices.x = (u32)joints_as_floats.x;
+ joint_indices.y = (u32)joints_as_floats.y;
+ joint_indices.z = (u32)joints_as_floats.z;
+ joint_indices.w = (u32)joints_as_floats.w;
+ printf("Joints affecting vertex %d : %d %d %d %d\n", v, joint_indices.x, joint_indices.y,
+ joint_indices.z, joint_indices.w);
+ vec4u_darray_push(tmp_joint_indices, joint_indices);
+ }
+
+ } else if (attribute.type == cgltf_attribute_type_weights) {
+ TRACE("Load joint weights from accessor");
+ cgltf_accessor *accessor = attribute.data;
+ assert(accessor->component_type == cgltf_component_type_r_32f);
+ assert(accessor->type == cgltf_type_vec4);
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ vec4 weights;
+ cgltf_accessor_read_float(accessor, v, &weights.x, 4);
+ printf("Weights affecting vertex %d : %f %f %f %f\n", v, weights.x, weights.y, weights.z,
+ weights.w);
+ vec4_darray_push(tmp_weights, weights);
+ }
+ } else {
+ WARN("Unhandled cgltf_attribute_type: %s. skipping..", attribute.name);
+ }
+ }
+
+ mesh mesh = { 0 };
+ mesh.vertices = vertex_darray_new(10);
+ mesh.vertex_bone_data = vertex_bone_data_darray_new(1);
+
+ if (primitive.material != NULL) {
+ for (int i = 0; i < material_darray_len(out_model->materials); i++) {
+ printf("%s vs %s \n", primitive.material->name, out_model->materials->data[i].name);
+ if (strcmp(primitive.material->name, out_model->materials->data[i].name) == 0) {
+ TRACE("Found material");
+ mesh.material_index = i;
+ break;
+ }
+ }
+ }
+
+ if (is_skinned) {
+ mesh.is_skinned = true;
+ // mesh.vertex_bone_data = vertex_bone_data_darray_new(tmp_joint_indices->len);
+ mesh.bones = joint_darray_new(tmp_joints->len);
+ for (int i = 0; i < tmp_joint_indices->len; i++) {
+ vertex_bone_data data;
+ data.joints = tmp_joint_indices->data[i];
+ data.weights = tmp_weights->data[i];
+ vertex_bone_data_darray_push(tmp_vertex_bone_data,
+ data); // Push the temp data that aligns with raw vertices
+ }
+ for (int i = 0; i < tmp_joints->len; i++) {
+ joint data = tmp_joints->data[i];
+ joint_darray_push(mesh.bones, data);
+ }
+ }
+
+ cgltf_accessor *indices = primitive.indices;
+ if (primitive.indices > 0) {
+ WARN("indices!");
+ mesh.has_indices = true;
+
+ mesh.indices = malloc(indices->count * sizeof(u32));
+ mesh.indices_len = indices->count;
+
+ // store indices
+ for (cgltf_size i = 0; i < indices->count; ++i) {
+ cgltf_uint ei;
+ cgltf_accessor_read_uint(indices, i, &ei, 1);
+ mesh.indices[i] = ei;
+ }
+
+ // fetch and store vertices for each index
+ for (cgltf_size i = 0; i < indices->count; ++i) {
+ vertex vert;
+ cgltf_uint index = mesh.indices[i];
+ vert.position = tmp_positions->data[index];
+ vert.normal = tmp_normals->data[index];
+ vert.uv = tmp_uvs->data[index];
+ vertex_darray_push(mesh.vertices, vert);
+
+ if (is_skinned) {
+ vertex_bone_data vbd = tmp_vertex_bone_data->data[index]; // create a copy
+ vertex_bone_data_darray_push(mesh.vertex_bone_data, vbd);
+ }
+ // for each vertex do the bone data
+ }
+ } else {
+ mesh.has_indices = false;
+ return false; // TODO
+ }
+
+ mesh_darray_push(out_model->meshes, mesh);
+
+ // clear data for each mesh
+ vec3_darray_clear(tmp_positions);
+ vec3_darray_clear(tmp_normals);
+ vec2_darray_free(tmp_uvs);
+ vec4u_darray_clear(tmp_joint_indices);
+ vec4_darray_clear(tmp_weights);
+ joint_darray_clear(tmp_joints);
+ }
+
+ for (int i = 0; i < out_model->meshes->len; i++) {
+ u32 mat_idx = out_model->meshes->data[i].material_index;
+ printf("Mesh %d Mat index %d Mat name %s\n", i, mat_idx,
+ out_model->materials->data[mat_idx].name);
+ }
+
+ // Animations
+ TRACE("Num animations %d", data->animations_count);
+ size_t num_animations = data->animations_count;
+ if (num_animations > 0) {
+// Create an arena for all animation related data
+#define ANIMATION_STORAGE_ARENA_SIZE (1024 * 1024 * 1024)
+ char *animation_backing_storage = malloc(ANIMATION_STORAGE_ARENA_SIZE);
+ // We'll store data on this arena so we can easily free it all at once later
+ out_model->animation_data_arena =
+ arena_create(animation_backing_storage, ANIMATION_STORAGE_ARENA_SIZE);
+ arena *arena = &out_model->animation_data_arena;
+
+ if (!out_model->animations) {
+ out_model->animations = animation_clip_darray_new(num_animations);
+ }
+
+ for (int anim_idx = 0; anim_idx < data->animations_count; anim_idx++) {
+ cgltf_animation animation = data->animations[anim_idx];
+ animation_clip clip = { 0 };
+
+ for (size_t c = 0; c < animation.channels_count; c++) {
+ cgltf_animation_channel channel = animation.channels[c];
+
+ animation_sampler *sampler = arena_alloc(arena, sizeof(animation_sampler));
+
+ animation_sampler **target_property;
+ keyframe_kind data_type;
+
+ switch (channel.target_path) {
+ case cgltf_animation_path_type_rotation:
+ target_property = &clip.rotation;
+ data_type = KEYFRAME_ROTATION;
+ break;
+ case cgltf_animation_path_type_translation:
+ target_property = &clip.translation;
+ data_type = KEYFRAME_TRANSLATION;
+ break;
+ case cgltf_animation_path_type_scale:
+ target_property = &clip.scale;
+ data_type = KEYFRAME_SCALE;
+ break;
+ case cgltf_animation_path_type_weights:
+ target_property = &clip.weights;
+ data_type = KEYFRAME_WEIGHTS;
+ WARN("Morph target weights arent supported yet");
+ return false;
+ default:
+ WARN("unsupported animation type");
+ return false;
+ }
+ *target_property = sampler;
+
+ sampler->current_index = 0;
+ printf("1 %d index\n", sampler->current_index);
+ sampler->animation.interpolation = INTERPOLATION_LINEAR;
+
+ // keyframe times
+ size_t n_frames = channel.sampler->input->count;
+ assert(channel.sampler->input->component_type == cgltf_component_type_r_32f);
+ // FIXME: CASSERT_MSG function "Expected animation sampler input component to be type f32
+ // (keyframe times)");
+ f32 *times = arena_alloc(arena, n_frames * sizeof(f32));
+ sampler->animation.n_timestamps = n_frames;
+ sampler->animation.timestamps = times;
+ cgltf_accessor_unpack_floats(channel.sampler->input, times, n_frames);
+
+ assert_path_type_matches_component_type(channel.target_path, channel.sampler->output);
+
+ // keyframe values
+ size_t n_values = channel.sampler->output->count;
+ assert(n_frames == n_values);
+
+ keyframes keyframes = { 0 };
+ keyframes.kind = KEYFRAME_ROTATION;
+ keyframes.count = n_values;
+ keyframes.values = arena_alloc(arena, n_values * sizeof(keyframe));
+ for (cgltf_size v = 0; v < channel.sampler->output->count; ++v) {
+ switch (data_type) {
+ case KEYFRAME_ROTATION: {
+ quat rot;
+ cgltf_accessor_read_float(channel.sampler->output, v, &rot.x, 4);
+ // printf("Quat %f %f %f %f\n", rot.x, rot.y, rot.z, rot.w);
+ keyframes.values[v].rotation = rot;
+ break;
+ }
+ case KEYFRAME_TRANSLATION: {
+ vec3 trans;
+ cgltf_accessor_read_float(channel.sampler->output, v, &trans.x, 3);
+ keyframes.values[v].translation = trans;
+ break;
+ }
+ case KEYFRAME_SCALE: {
+ vec3 scale;
+ cgltf_accessor_read_float(channel.sampler->output, v, &scale.x, 3);
+ keyframes.values[v].scale = scale;
+ break;
+ }
+ case KEYFRAME_WEIGHTS: {
+ // TODO
+ break;
+ }
+ }
+ }
+ sampler->animation.values = keyframes;
+
+ sampler->min = channel.sampler->input->min[0];
+ sampler->max = channel.sampler->input->max[0];
+
+ // clip.rotation = sampler;
+ // printf("%d timestamps\n", sampler->animation.n_timestamps);
+ // printf("%d index\n", sampler->current_index);
+ }
+
+ WARN("stuff %ld", clip.rotation->animation.n_timestamps);
+ animation_clip_darray_push(out_model->animations, clip);
+ }
+ }
+
+ return true;
+}
+
+/*
+bool model_load_gltf(const char *path, model *out_model) {
+ TRACE("Load GLTF %s", path);
+
+ // Setup temp arrays
+ kitc_darray *tmp_positions = kitc_darray_new(sizeof(vec3), 1000);
+ kitc_darray *tmp_normals = kitc_darray_new(sizeof(vec3), 1000);
+ kitc_darray *tmp_uvs = kitc_darray_new(sizeof(vec2), 1000);
+
+ // may as well just init with max capacity as we're just gonna free at end of this function anyway
+ bh_material_darray *materials = bh_material_darray_new(MAX_MATERIALS);
+ CASSERT(materials->len == 0);
+
+ cgltf_options options = {0};
+ cgltf_data *data = NULL;
+ cgltf_result result = cgltf_parse_file(&options, path, &data);
+ if (result == cgltf_result_success) {
+ DEBUG("gltf loaded succesfully");
+
+ cgltf_load_buffers(&options, data, path);
+ DEBUG("loaded buffers");
+
+ // -- Load materials.
+ // Each mesh will be handed a material
+ TRACE("Num materials %d", data->materials_count);
+ out_model->num_materials = data->materials_count;
+
+ for (int m = 0; m < data->materials_count; m++) {
+ cgltf_material gltf_material = data->materials[m];
+ bh_material our_material = {0};
+
+ str8 name = str8_copy(gltf_material.name);
+ printf("Material name %s\n", name.buf);
+ our_material.name = name;
+
+ cgltf_pbr_metallic_roughness pbr = gltf_material.pbr_metallic_roughness;
+ if (gltf_material.has_pbr_metallic_roughness) {
+ // we will use base color texture like blinn phong
+ cgltf_texture_view diff_tex = pbr.base_color_texture;
+ strcpy(our_material.diffuse_tex_path, diff_tex.texture->image->uri);
+ }
+
+ bh_material_darray_push(materials, our_material);
+ }
+
+ // -- Load animations.
+ TRACE("Num animations %d", data->animations_count);
+ out_model->num_animations = data->animations_count;
+ for (int anim_idx = 0; anim_idx < data->animations_count; anim_idx++) {
+ cgltf_animation animation = data->animations[anim_idx];
+ animation_clip our_animation = {0};
+
+ // loop through each channel (track)
+ for (int c = 0; c < animation.channels_count; c++) {
+ // each channel (track) has a target and a sampler
+ // for the time being we assume the target is the model itself
+ cgltf_animation_channel channel = animation.channels[c];
+ animation_track our_track = {0};
+ our_track.interpolation = interpolation_fn_from_gltf(channel.sampler->interpolation);
+ our_track.property = anim_prop_from_gltf(channel.target_path);
+
+ // get the actual data out via the "accessor"
+ // input will be the times
+
+ // Keyframe times
+ size_t n_frames = channel.sampler->input->count;
+ our_track.num_keyframes = n_frames;
+ f32 *times = malloc(sizeof(f32) * n_frames);
+ our_track.keyframe_times = times;
+ CASSERT_MSG(channel.sampler->input->component_type == cgltf_component_type_r_32f,
+ "Expected animation sampler input component to be type f32 (keyframe times)");
+ cgltf_accessor_unpack_floats(channel.sampler->input, times, channel.sampler->input->count);
+
+ // printf("keyframe times[\n");
+ // for (int i = 0; i < n_frames; i++) {
+ // printf(" %f\n", times[i]);
+ // }
+ // printf("]\n");
+
+ // Data!
+ if (channel.target_path == cgltf_animation_path_type_rotation) {
+ CASSERT(channel.sampler->output->component_type == cgltf_component_type_r_32f);
+ CASSERT(channel.sampler->output->type == cgltf_type_vec4);
+ }
+
+ our_track.keyframes = malloc(sizeof(keyframe_data) * n_frames);
+ for (cgltf_size v = 0; v < channel.sampler->output->count; ++v) {
+ quat rot;
+ cgltf_accessor_read_float(channel.sampler->output, v, &rot.x, 4);
+ // vectors[v] = rot;
+ // printf("Quat %f %f %f %f\n", rot.x, rot.y, rot.z, rot.w);
+ our_track.keyframes[v].rotation = rot;
+ }
+
+ our_track.min_time = channel.sampler->input->min[0];
+ our_track.max_time = channel.sampler->input->max[0];
+
+ // printf("min time: %f max time %f\n", our_track.min_time, our_track.max_time);
+
+ animation_track_darray_push(&our_animation.tracks, our_track);
+ }
+
+ out_model->animations[anim_idx] = our_animation;
+ }
+
+ // Load meshes
+ TRACE("Num meshes %d", data->meshes_count);
+ out_model->num_meshes = data->meshes_count;
+
+ for (int m = 0; m < data->meshes_count; m++) {
+ // at the moment we only handle one primitives per mesh
+ // CASSERT(data->meshes[m].primitives_count == 1);
+
+ // Load vertex data from FIRST primitive only
+ cgltf_primitive primitive = data->meshes[m].primitives[0];
+ DEBUG("Found %d attributes", primitive.attributes_count);
+ for (int a = 0; a < data->meshes[m].primitives[0].attributes_count; a++) {
+ cgltf_attribute attribute = data->meshes[m].primitives[0].attributes[a];
+ if (attribute.type == cgltf_attribute_type_position) {
+ TRACE("Load positions from accessor");
+
+ cgltf_accessor *accessor = attribute.data;
+ CASSERT(accessor->component_type == cgltf_component_type_r_32f);
+ CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex positions should be a vec3");
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ vec3 pos;
+ cgltf_accessor_read_float(accessor, v, &pos.x, 3);
+ kitc_darray_push(tmp_positions, &pos);
+ }
+
+ } else if (attribute.type == cgltf_attribute_type_normal) {
+ TRACE("Load normals from accessor");
+
+ cgltf_accessor *accessor = attribute.data;
+ CASSERT(accessor->component_type == cgltf_component_type_r_32f);
+ CASSERT_MSG(accessor->type == cgltf_type_vec3, "Normal vectors should be a vec3");
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ vec3 pos;
+ cgltf_accessor_read_float(accessor, v, &pos.x, 3);
+ kitc_darray_push(tmp_normals, &pos);
+ }
+
+ } else if (attribute.type == cgltf_attribute_type_texcoord) {
+ TRACE("Load texture coordinates from accessor");
+ cgltf_accessor *accessor = attribute.data;
+ CASSERT(accessor->component_type == cgltf_component_type_r_32f);
+ CASSERT_MSG(accessor->type == cgltf_type_vec2, "Texture coordinates should be a vec2");
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ vec2 tex;
+ bool success = cgltf_accessor_read_float(accessor, v, &tex.x, 2);
+ if (!success) {
+ ERROR("Error loading tex coord");
+ }
+ kitc_darray_push(tmp_uvs, &tex);
+ }
+ } else if (attribute.type == cgltf_attribute_type_joints) {
+ // handle joints
+
+ } else {
+ WARN("Unhandled cgltf_attribute_type: %s. skipping..", attribute.name);
+ }
+ }
+
+ // Create mesh
+ mesh mesh;
+ mesh.vertices =
+ kitc_darray_new(sizeof(mesh_vertex), data->meshes[m].primitives[0].attributes_count);
+
+ // Flatten faces from indices if present otherwise push vertices verbatim
+ cgltf_accessor *indices = primitive.indices;
+ if (primitive.indices > 0) {
+ mesh.has_indices = true;
+
+ kitc_darray *element_indexes = kitc_darray_new(sizeof(cgltf_uint), indices->count);
+ TRACE("Indices count %ld\n", indices->count);
+ for (cgltf_size i = 0; i < indices->count; ++i) {
+ cgltf_uint ei;
+ cgltf_accessor_read_uint(indices, i, &ei, 1);
+ kitc_darray_push(element_indexes, &ei);
+ }
+
+ kitc_darray_iter indices_iter = kitc_darray_iter_new(element_indexes);
+ cgltf_uint *cur;
+ while ((cur = kitc_darray_iter_next(&indices_iter))) {
+ mesh_vertex vert;
+ memcpy(&vert.position, &((vec3 *)tmp_positions->data)[*cur], sizeof(vec3));
+ memcpy(&vert.normal, &((vec3 *)tmp_normals->data)[*cur], sizeof(vec3));
+ memcpy(&vert.tex_coord, &((vec2 *)tmp_uvs->data)[*cur], sizeof(vec2));
+ kitc_darray_push(mesh.vertices, &vert);
+ // mesh_vertex_debug_print(vert);
+ }
+ // printf("indices: %ld, positions: %ld\n", kitc_darray_len(element_indexes),
+ kitc_darray_free(element_indexes);
+ } else {
+ mesh.has_indices = false;
+
+ bool calc_normals = false;
+ if (kitc_darray_len(tmp_normals) == 0) {
+ TRACE("No normals data is present. Normals will be calculated for you.");
+ calc_normals = true;
+ }
+ for (int v = 0; v < kitc_darray_len(tmp_positions); v++) {
+ mesh_vertex vert;
+ memcpy(&vert.position, &((vec3 *)tmp_positions->data)[v], sizeof(vec3));
+ if (!calc_normals) {
+ memcpy(&vert.normal, &((vec3 *)tmp_normals->data)[v], sizeof(vec3));
+ }
+ memcpy(&vert.tex_coord, &((vec2 *)tmp_uvs->data)[v], sizeof(vec2));
+ kitc_darray_push(mesh.vertices, &vert);
+ }
+
+ if (calc_normals) {
+ if (mesh.has_indices) {
+ // generate_normals_nonindexed(mesh.vertices);
+ } else {
+ generate_normals_nonindexed(mesh.vertices);
+ }
+ }
+ }
+
+ // Material
+ if (primitive.material != NULL) {
+ for (int i = 0; i < bh_material_darray_len(materials); i++) {
+ if (strcmp(primitive.material->name, cstr(materials->data->name))) {
+ TRACE("Found material");
+ mesh.material_index = i;
+ break;
+ }
+ }
+ }
+
+ // mesh.material_index = 0; // TODO: make sure DEFAULT_MATERIAL is added at material index 0
+ // TODO: material handling
+ mesh.material_index = bh_material_darray_len(materials) - 1;
+
+ calc_mesh_bounding_box(&mesh);
+ // out_model->meshes.data[m] = mesh;
+ mesh_darray_push(&out_model->meshes, mesh);
+
+ kitc_darray_clear(tmp_positions);
+ kitc_darray_clear(tmp_normals);
+ kitc_darray_clear(tmp_uvs);
+ }
+ // End Load meshes
+
+ // Load animations
+ DEBUG("Num animations %d", data->animations_count);
+ out_model->num_animations = data->animations_count;
+
+ // End Load animations
+
+ cgltf_free(data);
+ } else {
+ ERROR("Load failed");
+ kitc_darray_free(tmp_positions);
+ kitc_darray_free(tmp_normals);
+ kitc_darray_free(tmp_uvs);
+ return false;
+ }
+
+ for (int i = 0; i < materials->len; i++) {
+ out_model->materials[i] = materials->data[i];
+ }
+
+ calc_model_bounding_box(out_model);
+
+ DEBUG("Num meshes %d", out_model->num_meshes);
+ DEBUG("Num materials %d", out_model->num_materials);
+ DEBUG("Num animations %d", out_model->num_animations);
+
+ CASSERT(out_model->num_materials == 1);
+
+ kitc_darray_free(tmp_positions);
+ kitc_darray_free(tmp_normals);
+ kitc_darray_free(tmp_uvs);
+ bh_material_darray_free(materials);
+
+ TRACE("Finished loading GLTF");
+ return true;
+}
+*/ \ No newline at end of file