#include "celeritas.h" #include "input.h" #include "log.h" #include "maths.h" #include "maths_types.h" #include "primitives.h" #include "ral.h" #include "ral_types.h" #include "render.h" #include "render_types.h" #include "renderpasses.h" extern core g_core; // Scene / light setup vec3 light_position = { -2, 4, -1 }; mesh s_scene[5]; transform s_transforms[5]; void draw_scene(); void switch_view(); enum active_view { SceneView = 0, LightView, DebugQuad, }; // Define the shader data typedef struct mvp_uniforms { mat4 model; mat4 view; mat4 projection; } mvp_uniforms; typedef struct my_shader_bind_group { mvp_uniforms mvp; texture_handle tex; } my_shader_bind_group; // We also must create a function that knows how to return a `shader_data_layout` shader_data_layout mvp_uniforms_layout(void* data) { my_shader_bind_group* d = (my_shader_bind_group*)data; bool has_data = data != NULL; shader_binding b1 = { .label = "Matrices", .type = SHADER_BINDING_BYTES, .stores_data = has_data, .data = { .bytes = { .size = sizeof(mvp_uniforms) } } }; shader_binding b2 = { .label = "texSampler", .type = SHADER_BINDING_TEXTURE, .stores_data = has_data }; if (has_data) { b1.data.bytes.data = &d->mvp; b2.data.texture.handle = d->tex; } return (shader_data_layout){ .name = "global_ubo", .bindings = { b1, b2 }, .bindings_count = 2 }; } int main() { // Stuff that gets changed during program enum active_view current_view = SceneView; core_bringup(); arena scratch = arena_create(malloc(1024 * 1024), 1024 * 1024); vec3 camera_pos = vec3(5, 5, 5); vec3 camera_front = vec3_normalise(vec3_negate(camera_pos)); camera cam = camera_create(camera_pos, camera_front, VEC3_Y, deg_to_rad(45.0)); // TEMP shader_data mvp_uniforms_data = { .data = NULL, .shader_data_get_layout = &mvp_uniforms_layout }; gpu_renderpass_desc pass_description = { .default_framebuffer = true }; gpu_renderpass* renderpass = gpu_renderpass_create(&pass_description); str8 vert_path, frag_path; #ifdef CEL_REND_BACKEND_OPENGL vert_path = str8lit("assets/shaders/cube.vert"); frag_path = str8lit("assets/shaders/cube.frag"); #else vert_path = str8lit("build/linux/x86_64/debug/cube.vert.spv"); frag_path = str8lit("build/linux/x86_64/debug/cube.frag.spv"); #endif str8_opt vertex_shader = str8_from_file(&scratch, vert_path); str8_opt fragment_shader = str8_from_file(&scratch, frag_path); if (!vertex_shader.has_value || !fragment_shader.has_value) { ERROR_EXIT("Failed to load shaders from disk") } struct graphics_pipeline_desc pipeline_description = { .debug_name = "Basic Pipeline", .vertex_desc = static_3d_vertex_description(), .data_layouts = { mvp_uniforms_data }, .data_layouts_count = 1, .vs = { .debug_name = "Cube Vertex Shader", .filepath = vert_path, .code = vertex_shader.contents, .is_spirv = true }, .fs = { .debug_name = "Cube Fragment Shader", .filepath = frag_path, .code = fragment_shader.contents, .is_spirv = true }, .renderpass = renderpass, .wireframe = false, .depth_test = false }; gpu_pipeline* gfx_pipeline = gpu_graphics_pipeline_create(pipeline_description); // Textures texture_data tex_data = texture_data_load("assets/textures/texture.jpg", false); texture_handle texture = texture_data_upload(tex_data, true); texture_handle white_tex = texture_data_upload(texture_data_load("assets/textures/white1x1.png", false), true); // END TEMP ren_shadowmaps shadows = { .width = 1000, .height = 1000 }; ren_shadowmaps_init(&shadows); // Set up the scene // We want: // 1. a ground plane // 2. lights // 3. some boxes for (int i = 0; i < 4; i++) { geometry_data geo = geo_create_cuboid(f32x3(1, 1, 1)); s_scene[i] = mesh_create(&geo, true); s_transforms[i] = transform_create(vec3(-2 + (i * 1.2), 0, 0), quat_ident(), 1.0); } geometry_data plane = geo_create_plane(f32x2(20, 20)); s_scene[4] = mesh_create(&plane, true); s_transforms[4] = transform_create(vec3(0, -3, 0), quat_ident(), 1.0); geometry_data quad_geo = geo_create_plane(f32x2(2, 2)); // HACK: Swap vertices to make it face us vertex top0 = quad_geo.vertices->data[0]; quad_geo.vertices->data[0] = quad_geo.vertices->data[2]; quad_geo.vertices->data[2] = top0; vertex top1 = quad_geo.vertices->data[1]; quad_geo.vertices->data[1] = quad_geo.vertices->data[3]; quad_geo.vertices->data[3] = top1; mesh quad = mesh_create(&quad_geo, true); // Main loop while (!should_exit(&g_core)) { input_update(&g_core.input); printf("Frame\n"); if (key_just_released(KEYCODE_L)) { current_view = (current_view + 1) % 3; } if (key_just_released(KEYCODE_R)) { // TODO: gpu_pipeline_reload_shaders(gfx_pipeline); } if (!gpu_backend_begin_frame()) { continue; } gpu_cmd_encoder* enc = gpu_get_default_cmd_encoder(); gpu_cmd_encoder_begin(*enc); // Shadow draw gpu_cmd_encoder_begin_render(enc, shadows.rpass); printf("Here\n"); // calculations f32 near_plane = 1.0, far_plane = 10.0; mat4 light_projection = mat4_orthographic(-10.0, 10.0, -10.0, 10.0, near_plane, far_plane); mat4 light_view = mat4_look_at(light_position, VEC3_ZERO, VEC3_Y); mat4 light_space_matrix = mat4_mult(light_view, light_projection); lightspace_tf_uniform lsu = { .lightSpaceMatrix = light_space_matrix }; encode_bind_pipeline(enc, PIPELINE_GRAPHICS, shadows.static_pipeline); shader_data lightspace_data = { .data = NULL, .shader_data_get_layout = &lightspace_uniform_layout }; lightspace_data.data = &lsu; encode_bind_shader_data(enc, 0, &lightspace_data); draw_scene(); printf("Here\n"); gpu_cmd_encoder_end_render(enc); // End // Debug quad if (current_view == DebugQuad) { gpu_cmd_encoder_begin_render(enc, shadows.debug_quad->renderpass); encode_bind_pipeline(enc, PIPELINE_GRAPHICS, shadows.debug_quad); debug_quad_uniform dqu = { .depthMap = shadows.depth_tex }; shader_data debug_quad_data = { .data = &dqu, .shader_data_get_layout = debug_quad_layout }; encode_bind_shader_data(enc, 0, &debug_quad_data); encode_set_vertex_buffer(enc, quad.vertex_buffer); encode_set_index_buffer(enc, quad.index_buffer); encode_draw_indexed(enc, quad.geometry->indices->len); gpu_cmd_encoder_end_render(enc); } // Basic draw if (current_view == SceneView || current_view == LightView) { gpu_cmd_encoder_begin_render(enc, renderpass); encode_bind_pipeline(enc, PIPELINE_GRAPHICS, gfx_pipeline); mat4 view, proj; if (current_view == SceneView) { camera_view_projection(&cam, 1000, 1000, &view, &proj); } else { view = light_view; proj = light_projection; } for (int i = 0; i < 5; i++) { mat4 model = transform_to_mat(&s_transforms[i]); mvp_uniforms mvp_data = { .model = model, .view = view, .projection = proj }; my_shader_bind_group shader_bind_data = { .mvp = mvp_data, .tex = texture }; if (i == 4) { shader_bind_data.tex = white_tex; } mvp_uniforms_data.data = &shader_bind_data; encode_bind_shader_data(enc, 0, &mvp_uniforms_data); encode_set_vertex_buffer(enc, s_scene[i].vertex_buffer); encode_set_index_buffer(enc, s_scene[i].index_buffer); encode_draw_indexed(enc, s_scene[i].geometry->indices->len); } gpu_cmd_encoder_end_render(enc); } // END drawing gpu_cmd_buffer buf = gpu_cmd_encoder_finish(enc); gpu_queue_submit(&buf); gpu_backend_end_frame(); } renderer_shutdown(&g_core.renderer); return 0; } void draw_scene() { gpu_cmd_encoder* enc = gpu_get_default_cmd_encoder(); for (int i = 0; i < 5; i++) { mat4 model = transform_to_mat(&s_transforms[i]); model_uniform mu = { .model = model }; shader_data model_data = { .data = &mu, .shader_data_get_layout = model_uniform_layout }; encode_bind_shader_data(enc, 0, &model_data); printf("Here1\n"); encode_set_vertex_buffer(enc, s_scene[i].vertex_buffer); printf("Here2\n"); encode_set_index_buffer(enc, s_scene[i].index_buffer); printf("Here3\n"); printf("num %ld \n", s_scene[i].geometry->indices->len); encode_draw_indexed(enc, s_scene[i].geometry->indices->len); printf("Here4\n"); } }