/** * @file maths.h * @author your name (you@domain.com) * @brief * @version 0.1 * @date 2024-02-24 * @copyright Copyright (c) 2024 */ #pragma once #include #include #include "defines.h" #include "maths_types.h" // --- Helpers #define deg_to_rad(x) (x * 3.14 / 180.0) #define min(a, b) (a < b ? a : b) #define max(a, b) (a > b ? a : b) // --- Vector Implementations // Dimension 3 static inline vec3 vec3_create(f32 x, f32 y, f32 z) { return (vec3){ x, y, z }; } #define vec3(x, y, z) ((vec3){ x, y, z }) static inline vec3 vec3_add(vec3 a, vec3 b) { return (vec3){ a.x + b.x, a.y + b.y, a.z + b.z }; } static inline vec3 vec3_sub(vec3 a, vec3 b) { return (vec3){ a.x - b.x, a.y - b.y, a.z - b.z }; } static inline vec3 vec3_mult(vec3 a, f32 s) { return (vec3){ a.x * s, a.y * s, a.z * s }; } static inline vec3 vec3_div(vec3 a, f32 s) { return (vec3){ a.x / s, a.y / s, a.z / s }; } static inline f32 vec3_len_squared(vec3 a) { return (a.x * a.x) + (a.y * a.y) + (a.z * a.z); } static inline f32 vec3_len(vec3 a) { return sqrtf(vec3_len_squared(a)); } static inline vec3 vec3_negate(vec3 a) { return (vec3){ -a.x, -a.y, -a.z }; } static inline vec3 vec3_normalise(vec3 a) { f32 length = vec3_len(a); return vec3_div(a, length); } static inline f32 vec3_dot(vec3 a, vec3 b) { return a.x * b.x + a.y * b.y + a.z * b.z; } static inline vec3 vec3_cross(vec3 a, vec3 b) { return ( vec3){ .x = a.y * b.z - a.z * b.y, .y = a.z * b.x - a.x * b.z, .z = a.x * b.y - a.y * b.x }; } #define VEC3_ZERO ((vec3){ .x = 0.0, .y = 0.0, .z = 0.0 }) #define VEC3_X ((vec3){ .x = 1.0, .y = 0.0, .z = 0.0 }) #define VEC3_NEG_X ((vec3){ .x = -1.0, .y = 0.0, .z = 0.0 }) #define VEC3_Y ((vec3){ .x = 0.0, .y = 1.0, .z = 0.0 }) #define VEC3_NEG_Y ((vec3){ .x = 0.0, .y = -1.0, .z = 0.0 }) #define VEC3_Z ((vec3){ .x = 0.0, .y = 0.0, .z = 1.0 }) #define VEC3_NEG_Z ((vec3){ .x = 0.0, .y = 0.0, .z = -1.0 }) static inline void print_vec3(vec3 v) { printf("{ x: %f, y: %f, z: %f )\n", v.x, v.y, v.z); } // TODO: Dimension 2 static inline vec2 vec2_create(f32 x, f32 y) { return (vec2){ x, y }; } #define vec2(x, y) ((vec2){ x, y }) static inline vec2 vec2_div(vec2 a, f32 s) { return (vec2){ a.x / s, a.y / s }; } // TODO: Dimension 4 static inline vec4 vec4_create(f32 x, f32 y, f32 z, f32 w) { return (vec4){ x, y, z, w }; } #define vec4(x, y, z, w) (vec4_create(x, y, z, w)) #define VEC4_ZERO ((vec4){ .x = 0.0, .y = 0.0, .z = 0.0, .w = 0.0 }) // --- Quaternion Implementations static inline f32 quat_dot(quat a, quat b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } static inline quat quat_normalise(quat a) { f32 length = sqrtf(quat_dot(a, a)); // same as len squared return (quat){ a.x / length, a.y / length, a.z / length, a.w / length }; } static inline quat quat_ident() { return (quat){ .x = 0.0, .y = 0.0, .z = 0.0, .w = 1.0 }; } static quat quat_from_axis_angle(vec3 axis, f32 angle, bool normalize) { const f32 half_angle = 0.5f * angle; f32 s = sinf(half_angle); f32 c = cosf(half_angle); quat q = (quat){ s * axis.x, s * axis.y, s * axis.z, c }; if (normalize) { return quat_normalise(q); } return q; } // TODO: grok this. static inline quat quat_slerp(quat a, quat b, f32 percentage) { quat out_quaternion; quat q0 = quat_normalise(a); quat q1 = quat_normalise(b); // Compute the cosine of the angle between the two vectors. f32 dot = quat_dot(q0, q1); // If the dot product is negative, slerp won't take // the shorter path. Note that v1 and -v1 are equivalent when // the negation is applied to all four components. Fix by // reversing one quaternion. if (dot < 0.0f) { q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w; dot = -dot; } const f32 DOT_THRESHOLD = 0.9995f; if (dot > DOT_THRESHOLD) { // If the inputs are too close for comfort, linearly interpolate // and normalize the result. out_quaternion = (quat){ q0.x + ((q1.x - q0.x) * percentage), q0.y + ((q1.y - q0.y) * percentage), q0.z + ((q1.z - q0.z) * percentage), q0.w + ((q1.w - q0.w) * percentage) }; return quat_normalise(out_quaternion); } // Since dot is in range [0, DOT_THRESHOLD], acos is safe f32 theta_0 = cos(dot); // theta_0 = angle between input vectors f32 theta = theta_0 * percentage; // theta = angle between v0 and result f32 sin_theta = sin(theta); // compute this value only once f32 sin_theta_0 = sin(theta_0); // compute this value only once f32 s0 = cos(theta) - dot * sin_theta / sin_theta_0; // == sin(theta_0 - theta) / sin(theta_0) f32 s1 = sin_theta / sin_theta_0; return (quat){ (q0.x * s0) + (q1.x * s1), (q0.y * s0) + (q1.y * s1), (q0.z * s0) + (q1.z * s1), (q0.w * s0) + (q1.w * s1) }; } // --- Matrix Implementations static inline mat4 mat4_ident() { return (mat4){ .data = { 1.0, 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.0 } }; } static inline mat4 mat4_translation(vec3 position) { mat4 out_matrix = mat4_ident(); out_matrix.data[12] = position.x; out_matrix.data[13] = position.y; out_matrix.data[14] = position.z; return out_matrix; } static inline mat4 mat4_scale(f32 scale) { mat4 out_matrix = mat4_ident(); out_matrix.data[0] = scale; out_matrix.data[5] = scale; out_matrix.data[10] = scale; return out_matrix; } // TODO: double check this static inline mat4 mat4_rotation(quat rotation) { mat4 out_matrix = mat4_ident(); quat n = quat_normalise(rotation); out_matrix.data[0] = 1.0f - 2.0f * n.y * n.y - 2.0f * n.z * n.z; out_matrix.data[1] = 2.0f * n.x * n.y - 2.0f * n.z * n.w; out_matrix.data[2] = 2.0f * n.x * n.z + 2.0f * n.y * n.w; out_matrix.data[4] = 2.0f * n.x * n.y + 2.0f * n.z * n.w; out_matrix.data[5] = 1.0f - 2.0f * n.x * n.x - 2.0f * n.z * n.z; out_matrix.data[6] = 2.0f * n.y * n.z - 2.0f * n.x * n.w; out_matrix.data[8] = 2.0f * n.x * n.z - 2.0f * n.y * n.w; out_matrix.data[9] = 2.0f * n.y * n.z + 2.0f * n.x * n.w; out_matrix.data[10] = 1.0f - 2.0f * n.x * n.x - 2.0f * n.y * n.y; return out_matrix; } static inline mat4 mat4_mult(mat4 lhs, mat4 rhs) { mat4 out_matrix = mat4_ident(); const f32 *m1_ptr = lhs.data; const f32 *m2_ptr = rhs.data; f32 *dst_ptr = out_matrix.data; for (i32 i = 0; i < 4; ++i) { for (i32 j = 0; j < 4; ++j) { *dst_ptr = m1_ptr[0] * m2_ptr[0 + j] + m1_ptr[1] * m2_ptr[4 + j] + m1_ptr[2] * m2_ptr[8 + j] + m1_ptr[3] * m2_ptr[12 + j]; dst_ptr++; } m1_ptr += 4; } return out_matrix; } static mat4 mat4_transposed(mat4 matrix) { mat4 out_matrix = mat4_ident(); out_matrix.data[0] = matrix.data[0]; out_matrix.data[1] = matrix.data[4]; out_matrix.data[2] = matrix.data[8]; out_matrix.data[3] = matrix.data[12]; out_matrix.data[4] = matrix.data[1]; out_matrix.data[5] = matrix.data[5]; out_matrix.data[6] = matrix.data[9]; out_matrix.data[7] = matrix.data[13]; out_matrix.data[8] = matrix.data[2]; out_matrix.data[9] = matrix.data[6]; out_matrix.data[10] = matrix.data[10]; out_matrix.data[11] = matrix.data[14]; out_matrix.data[12] = matrix.data[3]; out_matrix.data[13] = matrix.data[7]; out_matrix.data[14] = matrix.data[11]; out_matrix.data[15] = matrix.data[15]; return out_matrix; } #if defined(CEL_REND_BACKEND_VULKAN) /** @brief Creates a perspective projection matrix compatible with Vulkan */ static inline mat4 mat4_perspective(f32 fov_radians, f32 aspect_ratio, f32 near_clip, f32 far_clip) { f32 half_tan_fov = tanf(fov_radians * 0.5f); mat4 out_matrix = { .data = { 0 } }; out_matrix.data[0] = 1.0f / (aspect_ratio * half_tan_fov); out_matrix.data[5] = -1.0f / half_tan_fov; // Flip Y-axis for Vulkan out_matrix.data[10] = -((far_clip + near_clip) / (far_clip - near_clip)); out_matrix.data[11] = -1.0f; out_matrix.data[14] = -((2.0f * far_clip * near_clip) / (far_clip - near_clip)); return out_matrix; } #else /** @brief Creates a perspective projection matrix */ static inline mat4 mat4_perspective(f32 fov_radians, f32 aspect_ratio, f32 near_clip, f32 far_clip) { f32 half_tan_fov = tanf(fov_radians * 0.5f); mat4 out_matrix = { .data = { 0 } }; out_matrix.data[0] = 1.0f / (aspect_ratio * half_tan_fov); out_matrix.data[5] = 1.0f / half_tan_fov; out_matrix.data[10] = -((far_clip + near_clip) / (far_clip - near_clip)); out_matrix.data[11] = -1.0f; out_matrix.data[14] = -((2.0f * far_clip * near_clip) / (far_clip - near_clip)); return out_matrix; } #endif /** @brief Creates an orthographic projection matrix */ static inline mat4 mat4_orthographic(f32 left, f32 right, f32 bottom, f32 top, f32 near_clip, f32 far_clip) { // source: kohi game engine. mat4 out_matrix = mat4_ident(); f32 lr = 1.0f / (left - right); f32 bt = 1.0f / (bottom - top); f32 nf = 1.0f / (near_clip - far_clip); out_matrix.data[0] = -2.0f * lr; out_matrix.data[5] = -2.0f * bt; out_matrix.data[10] = 2.0f * nf; out_matrix.data[12] = (left + right) * lr; out_matrix.data[13] = (top + bottom) * bt; out_matrix.data[14] = (far_clip + near_clip) * nf; return out_matrix; } static inline mat4 mat4_look_at(vec3 position, vec3 target, vec3 up) { mat4 out_matrix; vec3 z_axis; z_axis.x = target.x - position.x; z_axis.y = target.y - position.y; z_axis.z = target.z - position.z; z_axis = vec3_normalise(z_axis); vec3 x_axis = vec3_normalise(vec3_cross(z_axis, up)); vec3 y_axis = vec3_cross(x_axis, z_axis); out_matrix.data[0] = x_axis.x; out_matrix.data[1] = y_axis.x; out_matrix.data[2] = -z_axis.x; out_matrix.data[3] = 0; out_matrix.data[4] = x_axis.y; out_matrix.data[5] = y_axis.y; out_matrix.data[6] = -z_axis.y; out_matrix.data[7] = 0; out_matrix.data[8] = x_axis.z; out_matrix.data[9] = y_axis.z; out_matrix.data[10] = -z_axis.z; out_matrix.data[11] = 0; out_matrix.data[12] = -vec3_dot(x_axis, position); out_matrix.data[13] = -vec3_dot(y_axis, position); out_matrix.data[14] = vec3_dot(z_axis, position); out_matrix.data[15] = 1.0f; return out_matrix; } // ... // --- Transform Implementations #define TRANSFORM_DEFAULT \ ((transform){ .position = VEC3_ZERO, \ .rotation = (quat){ .x = 0., .y = 0., .z = 0., .w = 1. }, \ .scale = 1.0, \ .is_dirty = false }) static transform transform_create(vec3 pos, quat rot, f32 scale) { return (transform){ .position = pos, .rotation = rot, .scale = scale, .is_dirty = true }; } static inline mat4 transform_to_mat(transform *tf) { mat4 scale = mat4_scale(tf->scale); mat4 rotation = mat4_rotation(tf->rotation); mat4 translation = mat4_translation(tf->position); return mat4_mult(translation, mat4_mult(rotation, scale)); // return mat4_mult(mat4_mult(scale, rotation), translation); } // --- Sizing asserts _Static_assert(alignof(vec3) == 4, "vec3 is 4 byte aligned"); _Static_assert(sizeof(vec3) == 12, "vec3 is 12 bytes so has no padding"); _Static_assert(alignof(vec4) == 4, "vec4 is 4 byte aligned");