/** * @file maths.h * @author your name (you@domain.com) * @brief * @version 0.1 * @date 2024-02-24 * @copyright Copyright (c) 2024 */ #pragma once #include #include #include "defines.h" #include "maths_types.h" // #undef c_static_inline // #define c_static_inline static // --- Helpers #define deg_to_rad(x) (x * 3.14 / 180.0) #define MIN(a, b) (a < b ? a : b) #define MAX(a, b) (a > b ? a : b) // --- Vector Implementations // Dimension 3 PUB c_static_inline Vec3 vec3_create(f32 x, f32 y, f32 z); #define vec3(x, y, z) ((Vec3){ x, y, z }) PUB c_static_inline Vec3 vec3_add(Vec3 a, Vec3 b); PUB c_static_inline Vec3 vec3_sub(Vec3 a, Vec3 b); PUB c_static_inline Vec3 vec3_mult(Vec3 a, f32 s); PUB c_static_inline Vec3 vec3_div(Vec3 a, f32 s); PUB c_static_inline f32 vec3_len_squared(Vec3 a); PUB c_static_inline f32 vec3_len(Vec3 a); PUB c_static_inline Vec3 vec3_negate(Vec3 a); PUB c_static_inline Vec3 vec3_normalise(Vec3 a); PUB c_static_inline f32 vec3_dot(Vec3 a, Vec3 b); PUB c_static_inline Vec3 vec3_cross(Vec3 a, Vec3 b); static const Vec3 VEC3_X = vec3(1.0, 0.0, 0.0); static const Vec3 VEC3_NEG_X = vec3(-1.0, 0.0, 0.0); static const Vec3 VEC3_Y = vec3(0.0, 1.0, 0.0); static const Vec3 VEC3_NEG_Y = vec3(0.0, -1.0, 0.0); static const Vec3 VEC3_Z = vec3(0.0, 0.0, 1.0); static const Vec3 VEC3_NEG_Z = vec3(0.0, 0.0, -1.0); static const Vec3 VEC3_ZERO = vec3(0.0, 0.0, 0.0); static const Vec3 VEC3_ONES = vec3(1.0, 1.0, 1.0); static void print_vec3(Vec3 v) { printf("{ x: %f, y: %f, z: %f )\n", (f64)v.x, (f64)v.y, (f64)v.z); } // TODO: Dimension 2 static Vec2 vec2_create(f32 x, f32 y) { return (Vec2){ x, y }; } #define vec2(x, y) ((Vec2){ x, y }) static Vec2 vec2_div(Vec2 a, f32 s) { return (Vec2){ a.x / s, a.y / s }; } // TODO: Dimension 4 static Vec4 vec4_create(f32 x, f32 y, f32 z, f32 w) { return (Vec4){ x, y, z, w }; } #define vec4(x, y, z, w) (vec4_create(x, y, z, w)) #define VEC4_ZERO ((Vec4){ .x = 0.0, .y = 0.0, .z = 0.0, .w = 0.0 }) // --- Quaternion Implementations static f32 quat_dot(Quat a, Quat b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } static Quat quat_normalise(Quat a) { f32 length = sqrtf(quat_dot(a, a)); // same as len squared return (Quat){ a.x / length, a.y / length, a.z / length, a.w / length }; } static Quat quat_ident() { return (Quat){ .x = 0.0, .y = 0.0, .z = 0.0, .w = 1.0 }; } static Quat quat_from_axis_angle(Vec3 axis, f32 angle, bool normalize) { const f32 half_angle = 0.5f * angle; f32 s = sinf(half_angle); f32 c = cosf(half_angle); Quat q = (Quat){ s * axis.x, s * axis.y, s * axis.z, c }; if (normalize) { return quat_normalise(q); } return q; } // TODO: grok this. static Quat quat_slerp(Quat a, Quat b, f32 percentage) { Quat out_quaternion; Quat q0 = quat_normalise(a); Quat q1 = quat_normalise(b); // Compute the cosine of the angle between the two vectors. f32 dot = quat_dot(q0, q1); // If the dot product is negative, slerp won't take // the shorter path. Note that v1 and -v1 are equivalent when // the negation is applied to all four components. Fix by // reversing one quaternion. if (dot < 0.0f) { q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w; dot = -dot; } const f32 DOT_THRESHOLD = 0.9995f; if (dot > DOT_THRESHOLD) { // If the inputs are too close for comfort, linearly interpolate // and normalize the result. out_quaternion = (Quat){ q0.x + ((q1.x - q0.x) * percentage), q0.y + ((q1.y - q0.y) * percentage), q0.z + ((q1.z - q0.z) * percentage), q0.w + ((q1.w - q0.w) * percentage) }; return quat_normalise(out_quaternion); } // TODO: Are there math functions that take floats instead of doubles? // Since dot is in range [0, DOT_THRESHOLD], acos is safe f64 theta_0 = cos((f64)dot); // theta_0 = angle between input vectors f64 theta = theta_0 * (f64)percentage; // theta = angle between v0 and result f64 sin_theta = sin((f64)theta); // compute this value only once f64 sin_theta_0 = sin((f64)theta_0); // compute this value only once f32 s0 = cos(theta) - (f64)dot * sin_theta / sin_theta_0; // == sin(theta_0 - theta) / sin(theta_0) f32 s1 = sin_theta / sin_theta_0; return (Quat){ (q0.x * s0) + (q1.x * s1), (q0.y * s0) + (q1.y * s1), (q0.z * s0) + (q1.z * s1), (q0.w * s0) + (q1.w * s1) }; } // --- Matrix Implementations Mat4 mat4_ident(); static Mat4 mat4_translation(Vec3 position) { Mat4 out_matrix = mat4_ident(); out_matrix.data[12] = position.x; out_matrix.data[13] = position.y; out_matrix.data[14] = position.z; return out_matrix; } static Mat4 mat4_scale(Vec3 scale) { Mat4 out_matrix = mat4_ident(); out_matrix.data[0] = scale.x; out_matrix.data[5] = scale.y; out_matrix.data[10] = scale.z; return out_matrix; } // TODO: double check this static Mat4 mat4_rotation(Quat rotation) { Mat4 out_matrix = mat4_ident(); Quat n = quat_normalise(rotation); out_matrix.data[0] = 1.0f - 2.0f * n.y * n.y - 2.0f * n.z * n.z; out_matrix.data[1] = 2.0f * n.x * n.y - 2.0f * n.z * n.w; out_matrix.data[2] = 2.0f * n.x * n.z + 2.0f * n.y * n.w; out_matrix.data[4] = 2.0f * n.x * n.y + 2.0f * n.z * n.w; out_matrix.data[5] = 1.0f - 2.0f * n.x * n.x - 2.0f * n.z * n.z; out_matrix.data[6] = 2.0f * n.y * n.z - 2.0f * n.x * n.w; out_matrix.data[8] = 2.0f * n.x * n.z - 2.0f * n.y * n.w; out_matrix.data[9] = 2.0f * n.y * n.z + 2.0f * n.x * n.w; out_matrix.data[10] = 1.0f - 2.0f * n.x * n.x - 2.0f * n.y * n.y; return out_matrix; } static Mat4 mat4_mult(Mat4 lhs, Mat4 rhs) { Mat4 out_matrix = mat4_ident(); const f32 *m1_ptr = lhs.data; const f32 *m2_ptr = rhs.data; f32 *dst_ptr = out_matrix.data; for (i32 i = 0; i < 4; ++i) { for (i32 j = 0; j < 4; ++j) { *dst_ptr = m1_ptr[0] * m2_ptr[0 + j] + m1_ptr[1] * m2_ptr[4 + j] + m1_ptr[2] * m2_ptr[8 + j] + m1_ptr[3] * m2_ptr[12 + j]; dst_ptr++; } m1_ptr += 4; } return out_matrix; } static Mat4 mat4_transposed(Mat4 matrix) { Mat4 out_matrix = mat4_ident(); out_matrix.data[0] = matrix.data[0]; out_matrix.data[1] = matrix.data[4]; out_matrix.data[2] = matrix.data[8]; out_matrix.data[3] = matrix.data[12]; out_matrix.data[4] = matrix.data[1]; out_matrix.data[5] = matrix.data[5]; out_matrix.data[6] = matrix.data[9]; out_matrix.data[7] = matrix.data[13]; out_matrix.data[8] = matrix.data[2]; out_matrix.data[9] = matrix.data[6]; out_matrix.data[10] = matrix.data[10]; out_matrix.data[11] = matrix.data[14]; out_matrix.data[12] = matrix.data[3]; out_matrix.data[13] = matrix.data[7]; out_matrix.data[14] = matrix.data[11]; out_matrix.data[15] = matrix.data[15]; return out_matrix; } #if defined(CEL_REND_BACKEND_VULKAN) /** @brief Creates a perspective projection matrix compatible with Vulkan */ c_static_inline Mat4 mat4_perspective(f32 fov_radians, f32 aspect_ratio, f32 near_clip, f32 far_clip) { f32 half_tan_fov = tanf(fov_radians * 0.5f); Mat4 out_matrix = { .data = { 0 } }; out_matrix.data[0] = 1.0f / (aspect_ratio * half_tan_fov); out_matrix.data[5] = -1.0f / half_tan_fov; // Flip Y-axis for Vulkan out_matrix.data[10] = -((far_clip + near_clip) / (far_clip - near_clip)); out_matrix.data[11] = -1.0f; out_matrix.data[14] = -((2.0f * far_clip * near_clip) / (far_clip - near_clip)); return out_matrix; } #else /** @brief Creates a perspective projection matrix */ static inline Mat4 mat4_perspective(f32 fov_radians, f32 aspect_ratio, f32 near_clip, f32 far_clip) { f32 half_tan_fov = tanf(fov_radians * 0.5f); Mat4 out_matrix = { .data = { 0 } }; out_matrix.data[0] = 1.0f / (aspect_ratio * half_tan_fov); out_matrix.data[5] = 1.0f / half_tan_fov; out_matrix.data[10] = -((far_clip + near_clip) / (far_clip - near_clip)); out_matrix.data[11] = -1.0f; out_matrix.data[14] = -((2.0f * far_clip * near_clip) / (far_clip - near_clip)); return out_matrix; } #endif /** @brief Creates an orthographic projection matrix */ static inline Mat4 mat4_orthographic(f32 left, f32 right, f32 bottom, f32 top, f32 near_clip, f32 far_clip) { // source: kohi game engine. Mat4 out_matrix = mat4_ident(); f32 lr = 1.0f / (left - right); f32 bt = 1.0f / (bottom - top); f32 nf = 1.0f / (near_clip - far_clip); out_matrix.data[0] = -2.0f * lr; out_matrix.data[5] = -2.0f * bt; out_matrix.data[10] = 2.0f * nf; out_matrix.data[12] = (left + right) * lr; out_matrix.data[13] = (top + bottom) * bt; out_matrix.data[14] = (far_clip + near_clip) * nf; return out_matrix; } static inline Mat4 mat4_look_at(Vec3 position, Vec3 target, Vec3 up) { Mat4 out_matrix; Vec3 z_axis; z_axis.x = target.x - position.x; z_axis.y = target.y - position.y; z_axis.z = target.z - position.z; z_axis = vec3_normalise(z_axis); Vec3 x_axis = vec3_normalise(vec3_cross(z_axis, up)); Vec3 y_axis = vec3_cross(x_axis, z_axis); out_matrix.data[0] = x_axis.x; out_matrix.data[1] = y_axis.x; out_matrix.data[2] = -z_axis.x; out_matrix.data[3] = 0; out_matrix.data[4] = x_axis.y; out_matrix.data[5] = y_axis.y; out_matrix.data[6] = -z_axis.y; out_matrix.data[7] = 0; out_matrix.data[8] = x_axis.z; out_matrix.data[9] = y_axis.z; out_matrix.data[10] = -z_axis.z; out_matrix.data[11] = 0; out_matrix.data[12] = -vec3_dot(x_axis, position); out_matrix.data[13] = -vec3_dot(y_axis, position); out_matrix.data[14] = vec3_dot(z_axis, position); out_matrix.data[15] = 1.0f; return out_matrix; } // ... // --- Transform Implementations #define TRANSFORM_DEFAULT \ ((Transform){ .position = VEC3_ZERO, \ .rotation = (Quat){ .x = 0., .y = 0., .z = 0., .w = 1. }, \ .scale = 1.0, \ .is_dirty = false }) static Transform transform_create(Vec3 pos, Quat rot, Vec3 scale) { return (Transform){ .position = pos, .rotation = rot, .scale = scale, .is_dirty = true }; } Mat4 transform_to_mat(Transform *tf); // --- Sizing asserts _Static_assert(alignof(Vec3) == 4, "Vec3 is 4 byte aligned"); _Static_assert(sizeof(Vec3) == 12, "Vec3 is 12 bytes so has no padding"); _Static_assert(alignof(Vec4) == 4, "Vec4 is 4 byte aligned");