#include "primitives.h" #include "colours.h" #include "log.h" #include "maths.h" #include "ral_types.h" #include "render_types.h" #define VERT_3D(arr, pos, norm, uv) \ { \ vertex v = { .static_3d = { .position = pos, .normal = norm, .tex_coords = uv } }; \ vertex_darray_push(arr, v); \ } void push_triangle(u32_darray* arr, u32 i0, u32 i1, u32 i2) { u32_darray_push(arr, i0); u32_darray_push(arr, i1); u32_darray_push(arr, i2); } // TODO: move to another file void geo_free_data(geometry_data* geo) { vertex_darray_free(geo->vertices); geo->vertices = NULL; // TODO: do indices as well /* if (geo->has_indices) { */ /* u32_darray_free(&geo->indices); */ /* } */ } // vertices vec3 plane_vertex_positions[] = { (vec3){ -0.5, 0, -0.5}, (vec3){ 0.5, 0, -0.5}, (vec3){ -0.5, 0, 0.5}, (vec3){ 0.5, 0, 0.5}, }; geometry_data geo_create_plane(f32x2 extents) { vertex_darray* vertices = vertex_darray_new(4); u32_darray* indices = u32_darray_new(vertices->len); vec3 vert_pos[4]; memcpy(&vert_pos, plane_vertex_positions, sizeof(plane_vertex_positions)); for (int i = 0; i < 4; i++) { vert_pos[i].x *= extents.x; vert_pos[i].z *= extents.y; } VERT_3D(vertices, vert_pos[0], VEC3_Y, vec2(0, 0)); VERT_3D(vertices, vert_pos[1], VEC3_Y, vec2(1, 0)); VERT_3D(vertices, vert_pos[2], VEC3_Y, vec2(0, 1)); VERT_3D(vertices, vert_pos[3], VEC3_Y, vec2(1, 1)); push_triangle(indices, 2,1,0); push_triangle(indices, 1,2,3); geometry_data geo = { .format = VERTEX_STATIC_3D, .vertices = vertices, .has_indices = true, .indices = indices, .colour = (rgba){ 0, 0, 0, 1 } }; return geo; } // OLD static const vec3 BACK_BOT_LEFT = (vec3){ 0, 0, 0 }; static const vec3 BACK_BOT_RIGHT = (vec3){ 1, 0, 0 }; static const vec3 BACK_TOP_LEFT = (vec3){ 0, 1, 0 }; static const vec3 BACK_TOP_RIGHT = (vec3){ 1, 1, 0 }; static const vec3 FRONT_BOT_LEFT = (vec3){ 0, 0, 1 }; static const vec3 FRONT_BOT_RIGHT = (vec3){ 1, 0, 1 }; static const vec3 FRONT_TOP_LEFT = (vec3){ 0, 1, 1 }; static const vec3 FRONT_TOP_RIGHT = (vec3){ 1, 1, 1 }; geometry_data geo_create_cuboid(f32x3 extents) { /* static mesh prim_cube_mesh_create() { */ vertex_darray* vertices = vertex_darray_new(36); // back faces VERT_3D(vertices, BACK_TOP_RIGHT, VEC3_NEG_Z, vec2(1, 0)); VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_Z, vec2(0, 1)); VERT_3D(vertices, BACK_TOP_LEFT, VEC3_NEG_Z, vec2(0, 0)); VERT_3D(vertices, BACK_TOP_RIGHT, VEC3_NEG_Z, vec2(1, 0)); VERT_3D(vertices, BACK_BOT_RIGHT, VEC3_NEG_Z, vec2(1, 1)); VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_Z, vec2(0, 1)); // front faces VERT_3D(vertices, FRONT_BOT_LEFT, VEC3_Z, vec2(0, 1)); VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_Z, vec2(1, 0)); VERT_3D(vertices, FRONT_TOP_LEFT, VEC3_Z, vec2(0, 0)); VERT_3D(vertices, FRONT_BOT_LEFT, VEC3_Z, vec2(0, 1)); VERT_3D(vertices, FRONT_BOT_RIGHT, VEC3_Z, vec2(1, 1)); VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_Z, vec2(1, 0)); // top faces VERT_3D(vertices, BACK_TOP_LEFT, VEC3_Y, vec2(0, 0)); VERT_3D(vertices, FRONT_TOP_LEFT, VEC3_Y, vec2(0, 1)); VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_Y, vec2(1, 1)); VERT_3D(vertices, BACK_TOP_LEFT, VEC3_Y, vec2(0, 0)); VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_Y, vec2(1, 1)); VERT_3D(vertices, BACK_TOP_RIGHT, VEC3_Y, vec2(1, 0)); // bottom faces VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_Y, vec2(0, 1)); VERT_3D(vertices, FRONT_BOT_RIGHT, VEC3_NEG_Y, vec2(1, 1)); VERT_3D(vertices, FRONT_BOT_LEFT, VEC3_NEG_Y, vec2(0, 1)); VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_Y, vec2(0, 1)); VERT_3D(vertices, BACK_BOT_RIGHT, VEC3_NEG_Y, vec2(1, 1)); VERT_3D(vertices, FRONT_BOT_RIGHT, VEC3_NEG_Y, vec2(0, 1)); // right faces VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_X, vec2(0, 0)); VERT_3D(vertices, BACK_BOT_RIGHT, VEC3_X, vec2(1, 1)); VERT_3D(vertices, BACK_TOP_RIGHT, VEC3_X, vec2(1, 0)); VERT_3D(vertices, BACK_BOT_RIGHT, VEC3_X, vec2(1, 1)); VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_X, vec2(0, 0)); VERT_3D(vertices, FRONT_BOT_RIGHT, VEC3_X, vec2(0, 1)); // left faces VERT_3D(vertices, FRONT_TOP_LEFT, VEC3_NEG_X, vec2(0, 0)); VERT_3D(vertices, BACK_TOP_LEFT, VEC3_NEG_X, vec2(0, 0)); VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_X, vec2(0, 0)); VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_X, vec2(0, 0)); VERT_3D(vertices, FRONT_BOT_LEFT, VEC3_NEG_X, vec2(0, 0)); VERT_3D(vertices, FRONT_TOP_LEFT, VEC3_NEG_X, vec2(0, 0)); u32_darray* indices = u32_darray_new(vertices->len); for (u32 i = 0; i < vertices->len; i++) { u32_darray_push(indices, i); } geometry_data geo = { .format = VERTEX_STATIC_3D, .vertices = vertices, .has_indices = true, .indices = indices, // FIXME: make darray methods that return stack allocated struct .colour = (rgba){ 0, 0, 0, 1 } }; return geo; } /* /\** @brief create a new model with the shape of a cube *\/ */ /* static model_handle prim_cube_new(core* core) { */ /* model model = { 0 }; */ /* mesh cube = prim_cube_mesh_create(); */ /* mesh_darray_push(model.meshes, cube); */ /* assert(mesh_darray_len(model.meshes) == 1); */ /* u32 index = (u32)model_darray_len(core->models); */ /* model_darray_push_copy(core->models, &model); */ /* return (model_handle){ .raw = index }; */ /* } */ // --- Spheres vec3 spherical_to_cartesian_coords(f32 rho, f32 theta, f32 phi) { f32 x = rho * sin(phi) * cos(theta); f32 y = rho * cos(phi); f32 z = rho * sin(phi) * sin(theta); return vec3(x, y, z); } geometry_data geo_create_uvsphere(f32 radius, u32 north_south_lines, u32 east_west_lines) { assert(east_west_lines >= 3); // sphere will be degenerate and look gacked without at least 3 assert(north_south_lines >= 3); vertex_darray* vertices = vertex_darray_new(2 + (east_west_lines - 1) * north_south_lines); // Create a UV sphere with spherical coordinates // a point P on the unit sphere can be represented P(r, theta, phi) // for each vertex we must convert that to a cartesian R3 coordinate // Top point vertex top = { .static_3d = { .position = vec3(0, radius, 0), .normal = vec3_normalise(vec3(0, radius, 0)), .tex_coords = vec2(0, 0) } }; vertex_darray_push(vertices, top); // parallels for (u32 i = 0; i < (east_west_lines - 1); i++) { // phi should range from 0 to pi f32 phi = PI * (((f32)i + 1) / (f32)east_west_lines); // meridians for (u32 j = 0; j < east_west_lines; j++) { // theta should range from 0 to 2PI f32 theta = TAU * ((f32)j / (f32)north_south_lines); vec3 position = spherical_to_cartesian_coords(radius, theta, phi); // f32 d = vec3_len(position); // print_vec3(position); // printf("Phi %f Theta %f d %d\n", phi, theta, d); // assert(d == radius); // all points on the sphere should be 'radius' away from the origin vertex v = { .static_3d = { .position = position, .normal = vec3_normalise(position), // normal vector on sphere is same as position .tex_coords = vec2(0, 0) // TODO } }; vertex_darray_push(vertices, v); } } // Bottom point vertex bot = { .static_3d = { .position = vec3(0, -radius, 0), .normal = vec3_normalise(vec3(0, -radius, 0)), .tex_coords = vec2(0, 0) } }; vertex_darray_push(vertices, bot); u32_darray* indices = u32_darray_new(1); // top bottom rings for (u32 i = 0; i < north_south_lines; i++) { u32 i1 = i + 1; u32 i2 = (i + 1) % north_south_lines + 1; push_triangle(indices, 0, i1, i2); /* TRACE("Push triangle (%.2f %.2f %.2f)->(%.2f %.2f %.2f)->(%.2f %.2f %.2f)\n", */ /* vertices->data[0].static_3d.position.x, vertices->data[0].static_3d.position.y, */ /* vertices->data[0].static_3d.position.z, vertices->data[i1].static_3d.position.x, */ /* vertices->data[i1].static_3d.position.y, vertices->data[i1].static_3d.position.z, */ /* vertices->data[i2].static_3d.position.x, vertices->data[i2].static_3d.position.y, */ /* vertices->data[i2].static_3d.position.z); */ u32 bot = vertices->len - 1; u32 i3 = i + north_south_lines * (east_west_lines - 2) + 1; u32 i4 = (i + 1) % north_south_lines + north_south_lines * (east_west_lines - 2) + 1; push_triangle(indices, i3, bot, i4); } // quads for (u32 i = 0; i < east_west_lines - 2; i++) { u32 ring_start = i * north_south_lines + 1; u32 next_ring_start = (i + 1) * north_south_lines + 1; /* printf("ring start %d next ring start %d\n", ring_start, next_ring_start); */ /* print_vec3(vertices->data[ring_start].static_3d.position); */ /* print_vec3(vertices->data[next_ring_start].static_3d.position); */ for (u32 j = 0; j < north_south_lines; j++) { u32 i0 = ring_start + j; u32 i1 = next_ring_start + j; u32 i2 = ring_start + (j + 1) % north_south_lines; u32 i3 = next_ring_start + (j + 1) % north_south_lines; push_triangle(indices, i0, i2, i1); /* TRACE("Push triangle (%.2f %.2f %.2f)->(%.2f %.2f %.2f)->(%.2f %.2f %.2f)\n", */ /* vertices->data[i0].static_3d.position.x, vertices->data[i0].static_3d.position.y, */ /* vertices->data[i0].static_3d.position.z, vertices->data[i1].static_3d.position.x, */ /* vertices->data[i1].static_3d.position.y, vertices->data[i1].static_3d.position.z, */ /* vertices->data[i2].static_3d.position.x, vertices->data[i2].static_3d.position.y, */ /* vertices->data[i2].static_3d.position.z); */ push_triangle(indices, i1, i2, i3); } } for (int i = 0; i < vertices->len; i++) { // print_vec3(vertices->data[i].static_3d.normal); } geometry_data geo = { .format = VERTEX_STATIC_3D, .vertices = vertices, .has_indices = true, .indices = indices, .colour = RED_800, }; return geo; }