/** * @file obj.c * @brief Wavefront OBJ loader. * @copyright Copyright (c) 2024 */ #include #include #include #include #include #include #include "core.h" #include "darray.h" #include "file.h" #include "log.h" #include "maths.h" #include "mem.h" #include "path.h" #include "render.h" // #include "render_backend.h" #include "render_types.h" #include "str.h" struct face { u32 vertex_indices[3]; u32 normal_indices[3]; u32 uv_indices[3]; }; typedef struct face face; KITC_DECL_TYPED_ARRAY(vec3) KITC_DECL_TYPED_ARRAY(vec2) KITC_DECL_TYPED_ARRAY(face) // Forward declarations void create_submesh(mesh_darray *meshes, vec3_darray *tmp_positions, vec3_darray *tmp_normals, vec2_darray *tmp_uvs, face_darray *tmp_faces, material_darray *materials, bool material_loaded, char current_material_name[256]); bool load_material_lib(const char *path, str8 relative_path, material_darray *materials); bool model_load_obj_str(const char *file_string, str8 relative_path, model *out_model, bool invert_textures_y); model_handle model_load_obj(core *core, const char *path, bool invert_textures_y) { size_t arena_size = 1024; arena scratch = arena_create(malloc(arena_size), arena_size); TRACE("Loading model at Path %s\n", path); path_opt relative_path = path_parent(&scratch, path); if (!relative_path.has_value) { WARN("Couldnt get a relative path for the path to use for loading materials & textures later"); } const char *file_string = string_from_file(path); model model = { 0 }; model.name = str8_cstr_view(path); model.meshes = mesh_darray_new(1); // model.materials = material_darray_new(1); bool success = model_load_obj_str(file_string, relative_path.path, &model, invert_textures_y); if (!success) { FATAL("Couldnt load OBJ file at path %s", path); ERROR_EXIT("Load fails are considered crash-worthy right now. This will change later.\n"); } u32 index = model_darray_len(core->models); model_darray_push(core->models, model); arena_free_all(&scratch); arena_free_storage(&scratch); return (model_handle){ .raw = index }; } bool model_load_obj_str(const char *file_string, str8 relative_path, model *out_model, bool invert_textures_y) { TRACE("Load OBJ from string"); // // Setup temps // vec3_darray *tmp_positions = vec3_darray_new(1000); // vec3_darray *tmp_normals = vec3_darray_new(1000); // vec2_darray *tmp_uvs = vec2_darray_new(1000); // face_darray *tmp_faces = face_darray_new(1000); // // TODO: In the future I'd like these temporary arrays to be allocated from an arena provided // // by the function one level up, model_load_obj. That way we can just `return false;` anywhere // in // // this code to indicate an error, and be sure that all that memory will be cleaned up without // // having to call vec3_darray_free in every single error case before returning. // // Other state // bool object_set = false; // bool material_loaded = false; // char current_material_name[64]; // char *pch; // char *rest = file_string; // pch = strtok_r((char *)file_string, "\n", &rest); // int line_num = 0; // char last_char_type = 'a'; // while (pch != NULL) { // line_num++; // char line_header[128]; // int offset = 0; // // skip whitespace // char *p = pch; // skip_space(pch); // if (*p == '\0') { // /* the string is empty */ // } else { // // read the first word of the line // int res = sscanf(pch, "%s %n", line_header, &offset); // /* printf("header: %s, offset : %d res: %d\n",line_header, offset, res); */ // if (res != 1) { // break; // } // if (strcmp(line_header, "o") == 0 || strcmp(line_header, "g") == 0) { // // if we're currently parsing one // if (!object_set) { // object_set = true; // } else { // create_submesh(out_model->meshes, tmp_positions, tmp_normals, tmp_uvs, tmp_faces, // NULL, // out_model->materials, // material_loaded, current_material_name); // object_set = false; // } // } else if (strcmp(line_header, "v") == 0) { // // special logic: if we went from faces back to vertices trigger a mesh output. // // PS: I hate OBJ // if (last_char_type == 'f') { // create_submesh(out_model->meshes, tmp_positions, tmp_normals, tmp_uvs, tmp_faces, // NULL, // FIXME: out_model->materials, // material_loaded, current_material_name); // object_set = false; // } // last_char_type = 'v'; // vec3 vertex; // sscanf(pch + offset, "%f %f %f", &vertex.x, &vertex.y, &vertex.z); // vec3_darray_push(tmp_positions, vertex); // } else if (strcmp(line_header, "vt") == 0) { // last_char_type = 't'; // vec2 uv; // char copy[1024]; // memcpy(copy, pch + offset, strlen(pch + offset) + 1); // char *p = pch + offset; // while (isspace((unsigned char)*p)) ++p; // // I can't remember what is going on here // memset(copy, 0, 1024); // memcpy(copy, pch + offset, strlen(pch + offset) + 1); // int res = sscanf(copy, "%f %f", &uv.x, &uv.y); // memset(copy, 0, 1024); // memcpy(copy, pch + offset, strlen(pch + offset) + 1); // if (res != 1) { // // da frick? some .obj files have 3 uvs instead of 2 // f32 dummy; // int res2 = sscanf(copy, "%f %f %f", &uv.x, &uv.y, &dummy); // } // if (invert_textures_y) { // uv.y = -uv.y; // flip Y axis to be consistent with how other PNGs are being handled // // `texture_load` will flip it again // } // vec2_darray_push(tmp_uvs, uv); // } else if (strcmp(line_header, "vn") == 0) { // last_char_type = 'n'; // vec3 normal; // sscanf(pch + offset, "%f %f %f", &normal.x, &normal.y, &normal.z); // vec3_darray_push(tmp_normals, normal); // } else if (strcmp(line_header, "f") == 0) { // last_char_type = 'f'; // struct face f; // sscanf(pch + offset, "%d/%d/%d %d/%d/%d %d/%d/%d", &f.vertex_indices[0], // &f.uv_indices[0], // &f.normal_indices[0], &f.vertex_indices[1], &f.uv_indices[1], // &f.normal_indices[1], &f.vertex_indices[2], &f.uv_indices[2], // &f.normal_indices[2]); // // printf("f %d/%d/%d %d/%d/%d %d/%d/%d\n", f.vertex_indices[0], f.uv_indices[0], // // f.normal_indices[0], // // f.vertex_indices[1], f.uv_indices[1], f.normal_indices[1], // // f.vertex_indices[2], f.uv_indices[2], f.normal_indices[2]); // face_darray_push(tmp_faces, f); // } else if (strcmp(line_header, "mtllib") == 0) { // char filename[1024]; // sscanf(pch + offset, "%s", filename); // char mtllib_path[1024]; // snprintf(mtllib_path, sizeof(mtllib_path), "%s/%s", relative_path.buf, filename); // if (!load_material_lib(mtllib_path, relative_path, out_model->materials)) { // ERROR("couldnt load material lib"); // return false; // } // } else if (strcmp(line_header, "usemtl") == 0) { // material_loaded = true; // sscanf(pch + offset, "%s", current_material_name); // } // } // pch = strtok_r(NULL, "\n", &rest); // } // // last mesh or if one wasnt created with 'o' directive // if (face_darray_len(tmp_faces) > 0) { // TRACE("Last leftover mesh"); // create_submesh(out_model->meshes, tmp_positions, tmp_normals, tmp_uvs, tmp_faces, // NULL, // TODO: out_model->materials, // material_loaded, current_material_name); // } // // Free data // free((char *)file_string); // vec3_darray_free(tmp_positions); // vec3_darray_free(tmp_normals); // vec2_darray_free(tmp_uvs); // face_darray_free(tmp_faces); // TRACE("Freed temporary OBJ loading data"); // if (mesh_darray_len(out_model->meshes) > 256) { // printf("num meshes: %ld\n", mesh_darray_len(out_model->meshes)); // } // // TODO: bounding box calculation for each mesh // // TODO: bounding box calculation for model return true; } /** * @brief Takes the current positions, normals, uvs arrays and constructs the vertex array * from those indices. */ void create_submesh(mesh_darray *meshes, vec3_darray *tmp_positions, vec3_darray *tmp_normals, vec2_darray *tmp_uvs, face_darray *tmp_faces, material_darray *materials, bool material_loaded, char current_material_name[256]) { // size_t num_verts = face_darray_len(tmp_faces) * 3; // vertex_darray *out_vertices = vertex_darray_new(num_verts); // face_darray_iter face_iter = face_darray_iter_new(tmp_faces); // struct face *f; // while ((f = face_darray_iter_next(&face_iter))) { // for (int j = 0; j < 3; j++) { // vertex vert = { 0 }; // vert.position = tmp_positions->data[f->vertex_indices[j] - 1]; // if (vec3_darray_len(tmp_normals) == 0) { // vert.normal = vec3_create(0.0, 0.0, 0.0); // } else { // vert.normal = tmp_normals->data[f->normal_indices[j] - 1]; // } // vert.uv = tmp_uvs->data[f->uv_indices[j] - 1]; // vertex_darray_push(out_vertices, vert); // } // } // DEBUG("Loaded submesh\n vertices: %zu\n uvs: %zu\n normals: %zu\n faces: %zu", // vec3_darray_len(tmp_positions), vec2_darray_len(tmp_uvs), vec3_darray_len(tmp_normals), // face_darray_len(tmp_faces)); // // Clear current object faces // face_darray_clear(tmp_faces); // mesh m = { .vertices = out_vertices }; // if (material_loaded) { // // linear scan to find material // bool found = false; // DEBUG("Num of materials : %ld", material_darray_len(materials)); // material_darray_iter mat_iter = material_darray_iter_new(materials); // blinn_phong_material *cur_material; // while ((cur_material = material_darray_iter_next(&mat_iter))) { // if (strcmp(cur_material->name, current_material_name) == 0) { // DEBUG("Found match"); // m.material_index = mat_iter.current_idx - 1; // found = true; // break; // } // } // if (!found) { // // TODO: default material // m.material_index = 0; // DEBUG("Set default material"); // } // } // mesh_darray_push(meshes, m); } bool load_material_lib(const char *path, str8 relative_path, material_darray *materials) { TRACE("BEGIN load material lib at %s", path); // const char *file_string = string_from_file(path); // if (file_string == NULL) { // ERROR("couldnt load %s", path); // return false; // } // char *pch; // char *saveptr; // pch = strtok_r((char *)file_string, "\n", &saveptr); // material current_material = DEFAULT_MATERIAL; // bool material_set = false; // while (pch != NULL) { // char line_header[128]; // int offset = 0; // // read the first word of the line // int res = sscanf(pch, "%s %n", line_header, &offset); // if (res != 1) { // break; // } // // When we see "newmtl", start a new material, or flush the previous one // if (strcmp(line_header, "newmtl") == 0) { // if (material_set) { // // a material was being parsed, so flush that one and start a new one // material_darray_push(materials, current_material); // DEBUG("pushed material with name %s", current_material.name); // WARN("Reset current material"); // current_material = DEFAULT_MATERIAL; // } else { // material_set = true; // } // // scan the new material name // char material_name[64]; // sscanf(pch + offset, "%s", current_material.name); // DEBUG("material name %s\n", current_material.name); // // current_material.name = material_name; // } else if (strcmp(line_header, "Ka") == 0) { // // ambient // sscanf(pch + offset, "%f %f %f", ¤t_material.ambient_colour.x, // ¤t_material.ambient_colour.y, ¤t_material.ambient_colour.z); // } else if (strcmp(line_header, "Kd") == 0) { // // diffuse // sscanf(pch + offset, "%f %f %f", ¤t_material.diffuse.x, ¤t_material.diffuse.y, // ¤t_material.diffuse.z); // } else if (strcmp(line_header, "Ks") == 0) { // // specular // sscanf(pch + offset, "%f %f %f", ¤t_material.specular.x, // ¤t_material.specular.y, // ¤t_material.specular.z); // } else if (strcmp(line_header, "Ns") == 0) { // // specular exponent // sscanf(pch + offset, "%f", ¤t_material.spec_exponent); // } else if (strcmp(line_header, "map_Kd") == 0) { // char diffuse_map_filename[1024]; // sscanf(pch + offset, "%s", diffuse_map_filename); // char diffuse_map_path[1024]; // snprintf(diffuse_map_path, sizeof(diffuse_map_path), "%s/%s", relative_path.buf, // diffuse_map_filename); // printf("load from %s\n", diffuse_map_path); // // -------------- // texture diffuse_texture = texture_data_load(diffuse_map_path, true); // current_material.diffuse_texture = diffuse_texture; // strcpy(current_material.diffuse_tex_path, diffuse_map_path); // texture_data_upload(¤t_material.diffuse_texture); // // -------------- // } else if (strcmp(line_header, "map_Ks") == 0) { // // char specular_map_path[1024] = "assets/"; // // sscanf(pch + offset, "%s", specular_map_path + 7); // char specular_map_filename[1024]; // sscanf(pch + offset, "%s", specular_map_filename); // char specular_map_path[1024]; // snprintf(specular_map_path, sizeof(specular_map_path), "%s/%s", relative_path.buf, // specular_map_filename); // printf("load from %s\n", specular_map_path); // // -------------- // texture specular_texture = texture_data_load(specular_map_path, true); // current_material.specular_texture = specular_texture; // strcpy(current_material.specular_tex_path, specular_map_path); // texture_data_upload(¤t_material.specular_texture); // // -------------- // } else if (strcmp(line_header, "map_Bump") == 0) { // // TODO // } // pch = strtok_r(NULL, "\n", &saveptr); // } // TRACE("end load material lib"); // // last mesh or if one wasnt created with 'o' directive // // TRACE("Last leftover material"); // material_darray_push(materials, current_material); // INFO("Loaded %ld materials", material_darray_len(materials)); TRACE("END load material lib"); return true; }