1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
/**
* @file maths.h
* @author your name (you@domain.com)
* @brief
* @version 0.1
* @date 2024-02-24
* @copyright Copyright (c) 2024
*/
#pragma once
#include <math.h>
#include <stdio.h>
#include "maths_types.h"
// --- Helpers
#define deg_to_rad(x) (x * 3.14 / 180.0)
#define min(a, b) (a < b ? a : b)
#define max(a, b) (a > b ? a : b)
// --- Vector Implementations
// Dimension 3
static inline vec3 vec3_create(f32 x, f32 y, f32 z) { return (vec3){ x, y, z }; }
#define vec3(x, y, z) (vec3_create(x, y, z))
static inline vec3 vec3_add(vec3 a, vec3 b) { return (vec3){ a.x + b.x, a.y + b.y, a.z + b.z }; }
static inline vec3 vec3_sub(vec3 a, vec3 b) { return (vec3){ a.x - b.x, a.y - b.y, a.z - b.z }; }
static inline vec3 vec3_mult(vec3 a, f32 s) { return (vec3){ a.x * s, a.y * s, a.z * s }; }
static inline vec3 vec3_div(vec3 a, f32 s) { return (vec3){ a.x / s, a.y / s, a.z / s }; }
static inline f32 vec3_len_squared(vec3 a) { return (a.x * a.x) + (a.y * a.y) + (a.z * a.z); }
static inline f32 vec3_len(vec3 a) { return sqrtf(vec3_len_squared(a)); }
static inline vec3 vec3_negate(vec3 a) { return (vec3){ -a.x, -a.y, -a.z }; }
static inline vec3 vec3_normalise(vec3 a) {
f32 length = vec3_len(a);
return vec3_div(a, length);
}
static inline f32 vec3_dot(vec3 a, vec3 b) { return a.x * b.x + a.y * b.y + a.z * b.z; }
static inline vec3 vec3_cross(vec3 a, vec3 b) {
return (
vec3){ .x = a.y * b.z - a.z * b.y, .y = a.z * b.x - a.x * b.z, .z = a.x * b.y - a.y * b.x };
}
#define VEC3_ZERO ((vec3){ .x = 0.0, .y = 0.0, .z = 0.0 })
#define VEC3_X ((vec3){ .x = 1.0, .y = 0.0, .z = 0.0 })
#define VEC3_NEG_X ((vec3){ .x = -1.0, .y = 0.0, .z = 0.0 })
#define VEC3_Y ((vec3){ .x = 0.0, .y = 1.0, .z = 0.0 })
#define VEC3_NEG_Y ((vec3){ .x = 0.0, .y = -1.0, .z = 0.0 })
#define VEC3_Z ((vec3){ .x = 0.0, .y = 0.0, .z = 1.0 })
#define VEC3_NEG_Z ((vec3){ .x = 0.0, .y = 0.0, .z = -1.0 })
static inline void print_vec3(vec3 v) { printf("{ x: %f, y: %f, z: %f )\n", v.x, v.y, v.z); }
// TODO: Dimension 2
static inline vec2 vec2_create(f32 x, f32 y) { return (vec2){ x, y }; }
// TODO: Dimension 4
static inline vec4 vec4_create(f32 x, f32 y, f32 z, f32 w) { return (vec4){ x, y, z, w }; }
#define vec4(x, y, z, w) (vec4_create(x, y, z, w))
#define VEC4_ZERO ((vec4){ .x = 0.0, .y = 0.0, .z = 0.0, .w = 0.0 })
// --- Quaternion Implementations
static inline f32 quat_dot(quat a, quat b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; }
static inline quat quat_normalise(quat a) {
f32 length = sqrtf(quat_dot(a, a) // same as len squared
);
return (quat){ a.x / length, a.y / length, a.z / length, a.w / length };
}
static inline quat quat_ident() { return (quat){ .x = 0.0, .y = 0.0, .z = 0.0, .w = 1.0 }; }
static quat quat_from_axis_angle(vec3 axis, f32 angle, bool normalize) {
const f32 half_angle = 0.5f * angle;
f32 s = sinf(half_angle);
f32 c = cosf(half_angle);
quat q = (quat){ s * axis.x, s * axis.y, s * axis.z, c };
if (normalize) {
return quat_normalise(q);
}
return q;
}
// TODO: grok this.
static inline quat quat_slerp(quat a, quat b, f32 percentage) {
quat out_quaternion;
quat q0 = quat_normalise(a);
quat q1 = quat_normalise(b);
// Compute the cosine of the angle between the two vectors.
f32 dot = quat_dot(q0, q1);
// If the dot product is negative, slerp won't take
// the shorter path. Note that v1 and -v1 are equivalent when
// the negation is applied to all four components. Fix by
// reversing one quaternion.
if (dot < 0.0f) {
q1.x = -q1.x;
q1.y = -q1.y;
q1.z = -q1.z;
q1.w = -q1.w;
dot = -dot;
}
const f32 DOT_THRESHOLD = 0.9995f;
if (dot > DOT_THRESHOLD) {
// If the inputs are too close for comfort, linearly interpolate
// and normalize the result.
out_quaternion = (quat){q0.x + ((q1.x - q0.x) * percentage),
q0.y + ((q1.y - q0.y) * percentage),
q0.z + ((q1.z - q0.z) * percentage),
q0.w + ((q1.w - q0.w) * percentage)};
return quat_normalise(out_quaternion);
}
// Since dot is in range [0, DOT_THRESHOLD], acos is safe
f32 theta_0 = cos(dot); // theta_0 = angle between input vectors
f32 theta = theta_0 * percentage; // theta = angle between v0 and result
f32 sin_theta = sin(theta); // compute this value only once
f32 sin_theta_0 = sin(theta_0); // compute this value only once
f32 s0 =
cos(theta) -
dot * sin_theta / sin_theta_0; // == sin(theta_0 - theta) / sin(theta_0)
f32 s1 = sin_theta / sin_theta_0;
return (quat){(q0.x * s0) + (q1.x * s1), (q0.y * s0) + (q1.y * s1),
(q0.z * s0) + (q1.z * s1), (q0.w * s0) + (q1.w * s1)};
}
// --- Matrix Implementations
static inline mat4 mat4_ident() {
return (mat4){ .data = { 1.0, 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.0 } };
}
static inline mat4 mat4_translation(vec3 position) {
mat4 out_matrix = mat4_ident();
out_matrix.data[12] = position.x;
out_matrix.data[13] = position.y;
out_matrix.data[14] = position.z;
return out_matrix;
}
static inline mat4 mat4_scale(f32 scale) {
mat4 out_matrix = mat4_ident();
out_matrix.data[0] = scale;
out_matrix.data[5] = scale;
out_matrix.data[10] = scale;
return out_matrix;
}
// TODO: double check this
static inline mat4 mat4_rotation(quat rotation) {
mat4 out_matrix = mat4_ident();
quat n = quat_normalise(rotation);
out_matrix.data[0] = 1.0f - 2.0f * n.y * n.y - 2.0f * n.z * n.z;
out_matrix.data[1] = 2.0f * n.x * n.y - 2.0f * n.z * n.w;
out_matrix.data[2] = 2.0f * n.x * n.z + 2.0f * n.y * n.w;
out_matrix.data[4] = 2.0f * n.x * n.y + 2.0f * n.z * n.w;
out_matrix.data[5] = 1.0f - 2.0f * n.x * n.x - 2.0f * n.z * n.z;
out_matrix.data[6] = 2.0f * n.y * n.z - 2.0f * n.x * n.w;
out_matrix.data[8] = 2.0f * n.x * n.z - 2.0f * n.y * n.w;
out_matrix.data[9] = 2.0f * n.y * n.z + 2.0f * n.x * n.w;
out_matrix.data[10] = 1.0f - 2.0f * n.x * n.x - 2.0f * n.y * n.y;
return out_matrix;
}
static inline mat4 mat4_mult(mat4 lhs, mat4 rhs) {
mat4 out_matrix = mat4_ident();
const f32 *m1_ptr = lhs.data;
const f32 *m2_ptr = rhs.data;
f32 *dst_ptr = out_matrix.data;
for (i32 i = 0; i < 4; ++i) {
for (i32 j = 0; j < 4; ++j) {
*dst_ptr = m1_ptr[0] * m2_ptr[0 + j] + m1_ptr[1] * m2_ptr[4 + j] + m1_ptr[2] * m2_ptr[8 + j] +
m1_ptr[3] * m2_ptr[12 + j];
dst_ptr++;
}
m1_ptr += 4;
}
return out_matrix;
}
static mat4 mat4_transposed(mat4 matrix) {
mat4 out_matrix = mat4_ident();
out_matrix.data[0] = matrix.data[0];
out_matrix.data[1] = matrix.data[4];
out_matrix.data[2] = matrix.data[8];
out_matrix.data[3] = matrix.data[12];
out_matrix.data[4] = matrix.data[1];
out_matrix.data[5] = matrix.data[5];
out_matrix.data[6] = matrix.data[9];
out_matrix.data[7] = matrix.data[13];
out_matrix.data[8] = matrix.data[2];
out_matrix.data[9] = matrix.data[6];
out_matrix.data[10] = matrix.data[10];
out_matrix.data[11] = matrix.data[14];
out_matrix.data[12] = matrix.data[3];
out_matrix.data[13] = matrix.data[7];
out_matrix.data[14] = matrix.data[11];
out_matrix.data[15] = matrix.data[15];
return out_matrix;
}
#if defined(CEL_REND_BACKEND_VULKAN)
/** @brief Creates a perspective projection matrix compatible with Vulkan */
static inline mat4 mat4_perspective(f32 fov_radians, f32 aspect_ratio, f32 near_clip,
f32 far_clip) {
f32 half_tan_fov = tanf(fov_radians * 0.5f);
mat4 out_matrix = { .data = { 0 } };
out_matrix.data[0] = 1.0f / (aspect_ratio * half_tan_fov);
out_matrix.data[5] = -1.0f / half_tan_fov; // Flip Y-axis for Vulkan
out_matrix.data[10] = -((far_clip + near_clip) / (far_clip - near_clip));
out_matrix.data[11] = -1.0f;
out_matrix.data[14] = -((2.0f * far_clip * near_clip) / (far_clip - near_clip));
return out_matrix;
}
#else
/** @brief Creates a perspective projection matrix */
static inline mat4 mat4_perspective(f32 fov_radians, f32 aspect_ratio, f32 near_clip,
f32 far_clip) {
f32 half_tan_fov = tanf(fov_radians * 0.5f);
mat4 out_matrix = { .data = { 0 } };
out_matrix.data[0] = 1.0f / (aspect_ratio * half_tan_fov);
out_matrix.data[5] = 1.0f / half_tan_fov;
out_matrix.data[10] = -((far_clip + near_clip) / (far_clip - near_clip));
out_matrix.data[11] = -1.0f;
out_matrix.data[14] = -((2.0f * far_clip * near_clip) / (far_clip - near_clip));
return out_matrix;
}
#endif
/** @brief Creates an orthographic projection matrix */
static inline mat4 mat4_orthographic(f32 left, f32 right, f32 bottom, f32 top, f32 near_clip,
f32 far_clip) {
// source: kohi game engine.
mat4 out_matrix = mat4_ident();
f32 lr = 1.0f / (left - right);
f32 bt = 1.0f / (bottom - top);
f32 nf = 1.0f / (near_clip - far_clip);
out_matrix.data[0] = -2.0f * lr;
out_matrix.data[5] = -2.0f * bt;
out_matrix.data[10] = 2.0f * nf;
out_matrix.data[12] = (left + right) * lr;
out_matrix.data[13] = (top + bottom) * bt;
out_matrix.data[14] = (far_clip + near_clip) * nf;
return out_matrix;
}
static inline mat4 mat4_look_at(vec3 position, vec3 target, vec3 up) {
mat4 out_matrix;
vec3 z_axis;
z_axis.x = target.x - position.x;
z_axis.y = target.y - position.y;
z_axis.z = target.z - position.z;
z_axis = vec3_normalise(z_axis);
vec3 x_axis = vec3_normalise(vec3_cross(z_axis, up));
vec3 y_axis = vec3_cross(x_axis, z_axis);
out_matrix.data[0] = x_axis.x;
out_matrix.data[1] = y_axis.x;
out_matrix.data[2] = -z_axis.x;
out_matrix.data[3] = 0;
out_matrix.data[4] = x_axis.y;
out_matrix.data[5] = y_axis.y;
out_matrix.data[6] = -z_axis.y;
out_matrix.data[7] = 0;
out_matrix.data[8] = x_axis.z;
out_matrix.data[9] = y_axis.z;
out_matrix.data[10] = -z_axis.z;
out_matrix.data[11] = 0;
out_matrix.data[12] = -vec3_dot(x_axis, position);
out_matrix.data[13] = -vec3_dot(y_axis, position);
out_matrix.data[14] = vec3_dot(z_axis, position);
out_matrix.data[15] = 1.0f;
return out_matrix;
}
// ...
// --- Transform Implementations
#define TRANSFORM_DEFAULT \
((transform){ .position = VEC3_ZERO, \
.rotation = (quat){ .x = 0., .y = 0., .z = 0., .w = 1. }, \
.scale = 1.0, \
.is_dirty = false })
static transform transform_create(vec3 pos, quat rot, f32 scale) {
return (transform){ .position = pos, .rotation = rot, .scale = scale, .is_dirty = false };
}
static inline mat4 transform_to_mat(transform *tf) {
mat4 scale = mat4_scale(tf->scale);
mat4 rotation = mat4_rotation(tf->rotation);
mat4 translation = mat4_translation(tf->position);
return mat4_mult(translation, mat4_mult(rotation, scale));
}
// --- Sizing asserts
_Static_assert(alignof(vec3) == 4, "vec3 is 4 byte aligned");
_Static_assert(sizeof(vec3) == 12, "vec3 is 12 bytes so has no padding");
_Static_assert(alignof(vec4) == 4, "vec4 is 4 byte aligned");
// --- Some other types
typedef struct u32x3 {
union {
struct {
u32 x;
u32 y;
u32 z;
};
struct {
u32 r;
u32 g;
u32 b;
};
};
} u32x3;
#define u32x3(x, y, z) ((u32x3){ x, y, z })
typedef struct u32x2 {
u32 x;
u32 y;
} u32x2;
#define u32x2(x, y) ((u32x3){ x, y })
|