1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "animation.h"
#include "maths_types.h"
#include "mem.h"
#include "transform_hierarchy.h"
#define STB_IMAGE_IMPLEMENTATION
#include <stb_image.h>
#define STB_TRUETYPE_IMPLEMENTATION
#include <stb_truetype.h>
#include "render.h"
#include "render_types.h"
#include <glad/glad.h>
#include <glfw3.h>
#include "defines.h"
#include "log.h"
#include "maths.h"
#include "render_backend.h"
// FIXME: get rid of these and store dynamic screen realestate
// in renderer
#define SCR_WIDTH 1000
#define SCR_HEIGHT 1000
material DEFAULT_MATERIAL = { 0 };
bool renderer_init(renderer* ren) {
INFO("Renderer init");
// NOTE: all platforms use GLFW at the moment but thats subject to change
glfwInit();
#if defined(CEL_REND_BACKEND_OPENGL)
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 1);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#elif defined(CEL_REND_BACKEND_VULKAN)
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
#endif
// glfw window creation
GLFWwindow* window = glfwCreateWindow(ren->config.scr_width, ren->config.scr_height,
ren->config.window_name, NULL, NULL);
if (window == NULL) {
ERROR("Failed to create GLFW window\n");
glfwTerminate();
return false;
}
ren->window = window;
glfwMakeContextCurrent(ren->window);
DEBUG("init graphics api backend");
if (!gfx_backend_init(ren)) {
FATAL("Couldnt load graphics api backend");
return false;
}
ren->blinn_phong =
shader_create_separate("assets/shaders/blinn_phong.vert", "assets/shaders/blinn_phong.frag");
ren->skinned =
shader_create_separate("assets/shaders/skinned.vert", "assets/shaders/blinn_phong.frag");
default_material_init();
return true;
}
void renderer_shutdown(renderer* ren) {}
void render_frame_begin(renderer* ren) {
vec3 color = ren->config.clear_colour;
clear_screen(color);
}
void render_frame_end(renderer* ren) {
// present frame
glfwSwapBuffers(ren->window);
glfwPollEvents();
}
void default_material_init() {
INFO("Load default material")
DEFAULT_MATERIAL.ambient_colour = (vec3){ 0.5, 0.5, 0.5 };
DEFAULT_MATERIAL.diffuse = (vec3){ 0.8, 0.8, 0.8 };
DEFAULT_MATERIAL.specular = (vec3){ 1.0, 1.0, 1.0 };
DEFAULT_MATERIAL.diffuse_texture = texture_data_load("assets/textures/white1x1.png", false);
DEFAULT_MATERIAL.specular_texture = texture_data_load("assets/textures/black1x1.png", false);
DEFAULT_MATERIAL.spec_exponent = 32.0;
strcpy(DEFAULT_MATERIAL.name, "Default");
texture_data_upload(&DEFAULT_MATERIAL.diffuse_texture);
texture_data_upload(&DEFAULT_MATERIAL.specular_texture);
}
void model_destroy(model* model) {
TRACE("Freeing all data for model %s", model->name);
arena_free_all(&model->animation_data_arena);
arena_free_storage(&model->animation_data_arena);
mesh_darray_free(model->meshes);
material_darray_free(model->materials);
if (model->is_uploaded) {
// Delete gpu buffer data
for (u32 i = 0; i < mesh_darray_len(model->meshes); i++) {
// FIXME: dont leak Opengl
glDeleteBuffers(1, &model->meshes->data[i].vbo);
glDeleteVertexArrays(1, &model->meshes->data[i].vao);
}
}
}
typedef struct draw_ctx {
model_darray* models;
renderer* ren;
camera* cam;
scene* scene;
} draw_ctx;
bool draw_scene_node(transform_node* node, void* ctx_data) {
if (!node || !node->parent) return true;
draw_ctx* ctx = ctx_data;
model* m = &ctx->models->data[node->model.raw];
draw_model(ctx->ren, ctx->cam, m, &node->world_matrix_tf, ctx->scene);
return true;
}
void draw_scene(arena* frame, model_darray* models, renderer* ren, camera* camera,
transform_hierarchy* tfh, scene* scene) {
draw_ctx* ctx = arena_alloc(frame, sizeof(draw_ctx));
ctx->models = models;
ctx->ren = ren;
ctx->cam = camera;
ctx->scene = scene;
transform_hierarchy_dfs(transform_hierarchy_root_node(tfh), draw_scene_node, true, ctx);
}
void draw_model(renderer* ren, camera* camera, model* model, mat4* model_tf, scene* scene) {
// TRACE("Drawing model: %s", model->name);
mat4 view;
mat4 proj;
camera_view_projection(camera, SCR_HEIGHT, SCR_WIDTH, &view, &proj);
set_shader(ren->blinn_phong);
// set camera uniform
uniform_vec3f(ren->blinn_phong.program_id, "viewPos", &camera->position);
// set light uniforms
dir_light_upload_uniforms(ren->blinn_phong, &scene->dir_light);
for (int i = 0; i < scene->n_point_lights; i++) {
point_light_upload_uniforms(ren->blinn_phong, &scene->point_lights[i], '0' + i);
}
for (size_t i = 0; i < mesh_darray_len(model->meshes); i++) {
mesh* m = &model->meshes->data[i];
if (vertex_darray_len(m->vertices) == 0) {
continue;
}
// TRACE("Drawing mesh %d", i);
material* mat = &model->materials->data[m->material_index];
draw_mesh(ren, m, model_tf, mat, &view, &proj);
}
}
void draw_mesh(renderer* ren, mesh* mesh, mat4* model_tf, material* mat, mat4* view, mat4* proj) {
shader lighting_shader = ren->blinn_phong;
// bind buffer
bind_mesh_vertex_buffer(ren->backend_state, mesh);
// bind textures
bind_texture(lighting_shader, &mat->diffuse_texture, 0); // bind to slot 0
bind_texture(lighting_shader, &mat->specular_texture, 1); // bind to slot 1
uniform_f32(lighting_shader.program_id, "material.shininess", 32.);
// upload model transform
// mat4 trans = mat4_translation(tf.position);
// mat4 rot = mat4_rotation(tf.rotation);
// mat4 scale = mat4_scale(tf.scale);
// mat4 model_tf = mat4_mult(trans, mat4_mult(rot, scale));
uniform_mat4f(lighting_shader.program_id, "model", model_tf);
// upload view & projection matrices
uniform_mat4f(lighting_shader.program_id, "view", view);
uniform_mat4f(lighting_shader.program_id, "projection", proj);
// draw triangles
u32 num_vertices = vertex_darray_len(mesh->vertices);
draw_primitives(CEL_PRIMITIVE_TOPOLOGY_TRIANGLE, 0, num_vertices);
}
void draw_skinned_mesh(renderer* ren, mesh* mesh, transform tf, material* mat, mat4* view,
mat4* proj) {
shader lighting_shader = ren->skinned;
// bind buffer
bind_mesh_vertex_buffer(ren->backend_state, mesh);
// bind textures
bind_texture(lighting_shader, &mat->diffuse_texture, 0); // bind to slot 0
bind_texture(lighting_shader, &mat->specular_texture, 1); // bind to slot 1
// Uniforms
uniform_f32(lighting_shader.program_id, "material.shininess", 32.);
mat4 trans = mat4_translation(tf.position);
mat4 rot = mat4_rotation(tf.rotation);
mat4 scale = mat4_scale(tf.scale);
mat4 model_tf = mat4_mult(trans, mat4_mult(rot, scale));
uniform_mat4f(lighting_shader.program_id, "model", &model_tf);
uniform_mat4f(lighting_shader.program_id, "view", view);
uniform_mat4f(lighting_shader.program_id, "projection", proj);
// bone transforms
size_t n_bones = mesh->bones->len;
// for now assume correct ordering
mat4* bone_transforms = malloc(n_bones * sizeof(mat4));
mat4 parent = mat4_ident();
for (int bone_i = 0; bone_i < n_bones; bone_i++) {
joint j = mesh->bones->data[bone_i];
transform tf = mesh->bones->data[bone_i].transform_components;
tf.position.y = -tf.position.y;
mat4 local = transform_to_mat(&tf);
mat4 inverse = j.inverse_bind_matrix;
inverse.data[13] = -inverse.data[13];
mat4 intemediate = mat4_mult(local, inverse);
bone_transforms[bone_i] = intemediate;
parent = bone_transforms[bone_i];
}
// premultiply the inverses
// for (int bone_i = 0; bone_i < n_bones; bone_i++) {
// joint j = mesh->bones->data[bone_i];
// // bone_transforms[bone_i] = mat4_mult(bone_transforms[bone_i], j.inverse_bind_matrix);
// bone_transforms[bone_i] = mat4_mult(bone_transforms[bone_i], j.inverse_bind_matrix);
// }
glUniformMatrix4fv(glGetUniformLocation(lighting_shader.program_id, "boneMatrices"), n_bones,
GL_FALSE, &bone_transforms->data[0]);
free(bone_transforms);
// draw triangles
u32 num_vertices = vertex_darray_len(mesh->vertices);
draw_primitives(CEL_PRIMITIVE_TOPOLOGY_TRIANGLE, 0, num_vertices);
}
void draw_skinned_model(renderer* ren, camera* cam, model* model, transform tf, scene* scene) {
mat4 view;
mat4 proj;
camera_view_projection(cam, SCR_HEIGHT, SCR_WIDTH, &view, &proj);
set_shader(ren->skinned);
// set camera uniform
uniform_vec3f(ren->skinned.program_id, "viewPos", &cam->position);
// set light uniforms
dir_light_upload_uniforms(ren->skinned, &scene->dir_light);
for (int i = 0; i < scene->n_point_lights; i++) {
point_light_upload_uniforms(ren->skinned, &scene->point_lights[i], '0' + i);
}
for (size_t i = 0; i < mesh_darray_len(model->meshes); i++) {
mesh* m = &model->meshes->data[i];
if (vertex_darray_len(m->vertices) == 0) {
continue;
}
// material* mat = &model->materials->data[m->material_index];
material* mat = &DEFAULT_MATERIAL;
draw_skinned_mesh(ren, m, tf, mat, &view, &proj);
}
}
void model_upload_meshes(renderer* ren, model* model) {
INFO("Upload mesh vertex data to GPU for model %s", model->name);
size_t num_meshes = mesh_darray_len(model->meshes);
u32 VBOs[num_meshes];
u32 VAOs[num_meshes];
glGenBuffers(num_meshes, VBOs);
glGenVertexArrays(num_meshes, VAOs);
u64 total_verts = 0;
TRACE("num meshes %d", num_meshes);
// upload each mesh to the GPU
for (int mesh_i = 0; mesh_i < num_meshes; mesh_i++) {
mesh mesh = model->meshes->data[mesh_i];
model->meshes->data[mesh_i].vao = VAOs[mesh_i];
model->meshes->data[mesh_i].vbo = VBOs[mesh_i];
// 3. bind buffers
glBindBuffer(GL_ARRAY_BUFFER, VBOs[mesh_i]);
size_t num_vertices = vertex_darray_len(model->meshes->data[mesh_i].vertices);
// TRACE("Uploading vertex array data: %d verts", num_vertices);
total_verts += num_vertices;
// TODO: convert this garbage into a function
f32 verts[num_vertices * 8];
// for each face
// for (int i = 0; i < (num_vertices / 3); i++) {
// // for each vert in face
// for (int j = 0; j < 3; j++) {
// size_t stride = (i * 24) + j * 8;
// // printf("i: %d, stride: %ld, loc %d\n", i, stride, i * 3 + j);
// vertex vert = model->meshes->data[mesh_i].vertices->data[i];
// // printf("pos %f %f %f\n", vert.position.x, vert.position.y, vert.position.z);
// // printf("norm %f %f %f\n", vert.normal.x, vert.normal.y, vert.normal.z);
// // printf("tex %f %f\n", vert.uv.x, vert.uv.y);
// verts[stride + 0] =
// ((vertex*)model->meshes->data[mesh_i].vertices->data)[i * 3 + j].position.x;
// verts[stride + 1] =
// ((vertex*)model->meshes->data[mesh_i].vertices->data)[i * 3 + j].position.y;
// verts[stride + 2] =
// ((vertex*)model->meshes->data[mesh_i].vertices->data)[i * 3 + j].position.z;
// verts[stride + 3] =
// ((vertex*)model->meshes->data[mesh_i].vertices->data)[i * 3 + j].normal.x;
// verts[stride + 4] =
// ((vertex*)model->meshes->data[mesh_i].vertices->data)[i * 3 + j].normal.y;
// verts[stride + 5] =
// ((vertex*)model->meshes->data[mesh_i].vertices->data)[i * 3 + j].normal.z;
// verts[stride + 6] = ((vertex*)model->meshes->data[mesh_i].vertices->data)[i * 3 +
// j].uv.x; verts[stride + 7] = ((vertex*)model->meshes->data[mesh_i].vertices->data)[i * 3
// + j].uv.y;
// }
// }
size_t static_vertex_size = 2 * sizeof(vec3) + sizeof(vec2);
size_t skinned_vertex_size = 2 * sizeof(vec3) + sizeof(vec2) + 4 * sizeof(u32) + sizeof(vec4);
size_t vertex_size = mesh.is_skinned ? skinned_vertex_size : static_vertex_size;
TRACE("sizeof(vertex) -> %ld, vertex_size -> %ld\n", sizeof(vertex), vertex_size);
if (mesh.is_skinned) {
assert(vertex_size == (12 + 12 + 8 + 16 + 16));
} else {
assert(vertex_size == sizeof(vertex));
assert(vertex_size == 8 * sizeof(float));
}
size_t buffer_size = vertex_size * num_vertices;
u8* bytes = malloc(buffer_size);
for (int i = 0; i < num_vertices; i++) {
u8* p = bytes + vertex_size * i;
u8* bone_data_offset = p + static_vertex_size;
memcpy(p, &mesh.vertices->data[i], sizeof(vertex));
if (mesh.is_skinned) {
// printf("")
memcpy(bone_data_offset, &mesh.vertex_bone_data->data[i], sizeof(vertex_bone_data));
}
}
// 4. upload data
glBufferData(GL_ARRAY_BUFFER, buffer_size, bytes, GL_STATIC_DRAW);
// 5. cont. set mesh vertex layout
glBindVertexArray(model->meshes->data[mesh_i].vao);
// position attribute
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, vertex_size, (void*)0);
glEnableVertexAttribArray(0);
// normal vector attribute
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, vertex_size, (void*)(3 * sizeof(float)));
glEnableVertexAttribArray(1);
// tex coords
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, vertex_size, (void*)(6 * sizeof(float)));
glEnableVertexAttribArray(2);
// skinning (optional)
if (mesh.is_skinned) {
glEnableVertexAttribArray(3);
glVertexAttribIPointer(3, 4, GL_INT, vertex_size, (void*)(8 * sizeof(float)));
glEnableVertexAttribArray(4);
glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, vertex_size, (void*)(12 * sizeof(float)));
}
}
INFO("Uploaded %d submeshes with a total of %d vertices\n", num_meshes, total_verts);
// 6. reset buffer
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
texture texture_data_load(const char* path, bool invert_y) {
TRACE("Load texture %s", path);
// load the file data
// texture loading
int width, height, num_channels;
stbi_set_flip_vertically_on_load(invert_y);
#pragma GCC diagnostic ignored "-Wpointer-sign"
char* data = stbi_load(path, &width, &height, &num_channels, 0); // STBI_rgb_alpha);
if (data) {
DEBUG("loaded texture: %s", path);
} else {
WARN("failed to load texture");
}
unsigned int channel_type;
if (num_channels == 4) {
channel_type = GL_RGBA;
} else {
channel_type = GL_RGB;
}
return (texture){ .texture_id = 0,
.width = width,
.height = height,
.channel_count = num_channels,
.channel_type = channel_type,
.name = "TODO: Texture names",
.image_data = data };
}
void dir_light_upload_uniforms(shader shader, directional_light* light) {
uniform_vec3f(shader.program_id, "dirLight.direction", &light->direction);
uniform_vec3f(shader.program_id, "dirLight.ambient", &light->ambient);
uniform_vec3f(shader.program_id, "dirLight.diffuse", &light->diffuse);
uniform_vec3f(shader.program_id, "dirLight.specular", &light->specular);
}
void point_light_upload_uniforms(shader shader, point_light* light, char index) {
char position_str[] = "pointLights[x].position";
position_str[12] = (char)index;
char ambient_str[] = "pointLights[x].ambient";
ambient_str[12] = (char)index;
char diffuse_str[] = "pointLights[x].diffuse";
diffuse_str[12] = (char)index;
char specular_str[] = "pointLights[x].specular";
specular_str[12] = (char)index;
char constant_str[] = "pointLights[x].constant";
constant_str[12] = (char)index;
char linear_str[] = "pointLights[x].linear";
linear_str[12] = (char)index;
char quadratic_str[] = "pointLights[x].quadratic";
quadratic_str[12] = (char)index;
uniform_vec3f(shader.program_id, position_str, &light->position);
uniform_vec3f(shader.program_id, ambient_str, &light->ambient);
uniform_vec3f(shader.program_id, diffuse_str, &light->diffuse);
uniform_vec3f(shader.program_id, specular_str, &light->specular);
uniform_f32(shader.program_id, constant_str, light->constant);
uniform_f32(shader.program_id, linear_str, light->linear);
uniform_f32(shader.program_id, quadratic_str, light->quadratic);
}
|