summaryrefslogtreecommitdiff
path: root/src/resources/gltf.c
blob: b6e100f593dc5f896113c17d45f6a52f357e0dfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "animation.h"
#include "core.h"
#include "defines.h"
#include "file.h"
#include "loaders.h"
#include "log.h"
#include "mem.h"
#include "path.h"
#include "render.h"
#include "render_types.h"
#include "str.h"

#define CGLTF_IMPLEMENTATION
#include <cgltf.h>
// TODO: Port code from old repo

struct face {
  cgltf_uint indices[3];
};
typedef struct face face;

KITC_DECL_TYPED_ARRAY(vec3)
KITC_DECL_TYPED_ARRAY(vec2)
KITC_DECL_TYPED_ARRAY(u32)
KITC_DECL_TYPED_ARRAY(face)

bool model_load_gltf_str(const char *file_string, const char *filepath, str8 relative_path,
                         model *out_model, bool invert_textures_y);

model_handle model_load_gltf(struct core *core, const char *path, bool invert_texture_y) {
  size_t arena_size = 1024;
  arena scratch = arena_create(malloc(arena_size), arena_size);

  TRACE("Loading model at Path %s\n", path);
  path_opt relative_path = path_parent(&scratch, path);
  if (!relative_path.has_value) {
    WARN("Couldnt get a relative path for the path to use for loading materials & textures later");
  }
  const char *file_string = string_from_file(path);

  model model = { 0 };
  model.name = str8_cstr_view(path);
  model.meshes = mesh_darray_new(1);
  model.materials = material_darray_new(1);

  bool success =
      model_load_gltf_str(file_string, path, relative_path.path, &model, invert_texture_y);

  if (!success) {
    FATAL("Couldnt load OBJ file at path %s", path);
    ERROR_EXIT("Load fails are considered crash-worthy right now. This will change later.\n");
  }

  u32 index = model_darray_len(core->models);
  model_darray_push(core->models, model);

  arena_free_all(&scratch);
  arena_free_storage(&scratch);
  return (model_handle){ .raw = index };
}

// TODO: Brainstorm how I can make this simpler and break it up into more testable pieces

bool model_load_gltf_str(const char *file_string, const char *filepath, str8 relative_path,
                         model *out_model, bool invert_textures_y) {
  TRACE("Load GLTF from string");

  // Setup temps
  vec3_darray *tmp_positions = vec3_darray_new(1000);
  vec3_darray *tmp_normals = vec3_darray_new(1000);
  vec2_darray *tmp_uvs = vec2_darray_new(1000);
  face_darray *tmp_faces = face_darray_new(1000);

  cgltf_options options = { 0 };
  cgltf_data *data = NULL;
  cgltf_result result = cgltf_parse_file(&options, filepath, &data);
  if (result != cgltf_result_success) {
    WARN("gltf load failed");
    // TODO: cleanup arrays(allocate all from arena ?)
    return false;
  }

  cgltf_load_buffers(&options, data, filepath);
  DEBUG("loaded buffers");

  // --- Materials
  TRACE("Num materials %d", data->materials_count);
  size_t num_materials = data->materials_count;
  for (size_t m = 0; m < num_materials; m++) {
    cgltf_material gltf_material = data->materials[m];
    material our_material = DEFAULT_MATERIAL;

    strcpy(our_material.name, gltf_material.name);

    cgltf_pbr_metallic_roughness pbr = gltf_material.pbr_metallic_roughness;
    if (gltf_material.has_pbr_metallic_roughness) {
      // we will use base color texture like blinn phong
      cgltf_texture_view diff_tex_view = pbr.base_color_texture;

      char diffuse_map_path[1024];
      snprintf(diffuse_map_path, sizeof(diffuse_map_path), "%s/%s", relative_path.buf,
               diff_tex_view.texture->image->uri);

      strcpy(our_material.diffuse_tex_path, diffuse_map_path);
      texture diffuse_texture = texture_data_load(our_material.diffuse_tex_path, false);
      texture_data_upload(&diffuse_texture);
      our_material.diffuse_texture = diffuse_texture;

      cgltf_texture_view specular_tex_view = pbr.metallic_roughness_texture;

      char specular_map_path[1024];
      snprintf(specular_map_path, sizeof(specular_map_path), "%s/%s", relative_path.buf,
               specular_tex_view.texture->image->uri);

      strcpy(our_material.specular_tex_path, specular_map_path);
      texture specular_texture = texture_data_load(our_material.specular_tex_path, false);
      texture_data_upload(&specular_texture);
      our_material.specular_texture = specular_texture;
    }

    material_darray_push(out_model->materials, our_material);
  }

  // --- Meshes
  TRACE("Num meshes %d", data->meshes_count);
  size_t num_meshes = data->meshes_count;
  for (size_t m = 0; m < num_meshes; m++) {
    cgltf_primitive primitive = data->meshes[m].primitives[0];
    DEBUG("Found %d attributes", primitive.attributes_count);

    for (int a = 0; a < data->meshes[m].primitives[0].attributes_count; a++) {
      cgltf_attribute attribute = data->meshes[m].primitives[0].attributes[a];
      if (attribute.type == cgltf_attribute_type_position) {
        TRACE("Load positions from accessor");

        cgltf_accessor *accessor = attribute.data;
        assert(accessor->component_type == cgltf_component_type_r_32f);
        // CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex positions should be a vec3");

        for (cgltf_size v = 0; v < accessor->count; ++v) {
          vec3 pos;
          cgltf_accessor_read_float(accessor, v, &pos.x, 3);
          vec3_darray_push(tmp_positions, pos);
        }

      } else if (attribute.type == cgltf_attribute_type_normal) {
        TRACE("Load normals from accessor");

        cgltf_accessor *accessor = attribute.data;
        assert(accessor->component_type == cgltf_component_type_r_32f);
        // CASSERT_MSG(accessor->type == cgltf_type_vec3, "Normal vectors should be a vec3");

        for (cgltf_size v = 0; v < accessor->count; ++v) {
          vec3 pos;
          cgltf_accessor_read_float(accessor, v, &pos.x, 3);
          vec3_darray_push(tmp_normals, pos);
        }

      } else if (attribute.type == cgltf_attribute_type_texcoord) {
        TRACE("Load texture coordinates from accessor");
        cgltf_accessor *accessor = attribute.data;
        assert(accessor->component_type == cgltf_component_type_r_32f);
        // CASSERT_MSG(accessor->type == cgltf_type_vec2, "Texture coordinates should be a vec2");

        for (cgltf_size v = 0; v < accessor->count; ++v) {
          vec2 tex;
          bool success = cgltf_accessor_read_float(accessor, v, &tex.x, 2);
          if (!success) {
            ERROR("Error loading tex coord");
          }
          vec2_darray_push(tmp_uvs, tex);
        }
      } else if (attribute.type == cgltf_attribute_type_joints) {
        // TODO: handle joints
      } else {
        WARN("Unhandled cgltf_attribute_type: %s. skipping..", attribute.name);
      }
    }

    mesh mesh;
    mesh.vertices = vertex_darray_new(10);

    cgltf_accessor *indices = primitive.indices;
    if (primitive.indices > 0) {
      mesh.has_indices = true;

      mesh.indices = malloc(indices->count * sizeof(u32));
      mesh.indices_len = indices->count;

      // store indices
      for (cgltf_size i = 0; i < indices->count; ++i) {
        cgltf_uint ei;
        cgltf_accessor_read_uint(indices, i, &ei, 1);
        mesh.indices[i] = ei;
      }

      // fetch and store vertices for each index
      for (cgltf_size i = 0; i < indices->count; ++i) {
        vertex vert;
        cgltf_uint index = mesh.indices[i];
        vert.position = tmp_positions->data[index];
        vert.normal = tmp_normals->data[index];
        vert.uv = tmp_uvs->data[index];
        vertex_darray_push(mesh.vertices, vert);
      }
    } else {
      mesh.has_indices = false;
      return false;  // TODO
    }

    if (primitive.material != NULL) {
      for (int i = 0; i < material_darray_len(out_model->materials); i++) {
        printf("%s vs %s \n", primitive.material->name, out_model->materials->data[i].name);
        if (strcmp(primitive.material->name, out_model->materials->data[i].name) == 0) {
          TRACE("Found material");
          mesh.material_index = i;
          break;
        }
      }
    }

    mesh_darray_push(out_model->meshes, mesh);
  }

  for (int i = 0; i < out_model->meshes->len; i++) {
    u32 mat_idx = out_model->meshes->data[i].material_index;
    printf("Mesh %d Mat index %d Mat name %s\n", i, mat_idx,
           out_model->materials->data[mat_idx].name);
  }

  // Animations
  TRACE("Num animations %d", data->animations_count);
  size_t num_animations = data->animations_count;
  if (num_animations > 0) {
// Create an arena for all animation related data
#define ANIMATION_STORAGE_ARENA_SIZE (1024 * 1024)
    char *animation_backing_storage = malloc(ANIMATION_STORAGE_ARENA_SIZE);
    // We'll store data on this arena so we can easily free it all at once later
    arena anim_arena = arena_create(animation_backing_storage, ANIMATION_STORAGE_ARENA_SIZE);

    if (!out_model->animations) {
      out_model->animations = animation_clip_darray_new(num_animations);
    }

    for (int anim_idx = 0; anim_idx < data->animations_count; anim_idx++) {
      cgltf_animation animation = data->animations[anim_idx];
      animation_clip clip = { 0 };

      for (size_t c = 0; c < animation.channels_count; c++) {
        cgltf_animation_channel channel = animation.channels[c];

        animation_sampler *sampler = arena_alloc(&anim_arena, sizeof(animation_sampler));

        animation_sampler **target_property;
        keyframe_kind data_type;

        switch (channel.target_path) {
          case cgltf_animation_path_type_rotation:
            target_property = &clip.rotation;
            data_type = KEYFRAME_ROTATION;
            break;
          default:
            WARN("unsupported animation type");
            return false;
        }
        *target_property = sampler;

        sampler->current_index = 0;
        sampler->animation.interpolation = INTERPOLATION_LINEAR;

        // keyframe times
        size_t n_frames = channel.sampler->input->count;
        assert(channel.sampler->input->component_type == cgltf_component_type_r_32f);
        // FIXME: CASSERT_MSG function "Expected animation sampler input component to be type f32 (keyframe times)");
        
        sampler,
        
        // keyframe values
        size_t n_values = channel.sampler->output->count;
        assert(n_frames == n_values);

        sampler->animation.timestamps
      }
    }
  }

  return true;
}

/*
bool model_load_gltf(const char *path, model *out_model) {
  TRACE("Load GLTF %s", path);

  // Setup temp arrays
  kitc_darray *tmp_positions = kitc_darray_new(sizeof(vec3), 1000);
  kitc_darray *tmp_normals = kitc_darray_new(sizeof(vec3), 1000);
  kitc_darray *tmp_uvs = kitc_darray_new(sizeof(vec2), 1000);

  // may as well just init with max capacity as we're just gonna free at end of this function anyway
  bh_material_darray *materials = bh_material_darray_new(MAX_MATERIALS);
  CASSERT(materials->len == 0);

  cgltf_options options = {0};
  cgltf_data *data = NULL;
  cgltf_result result = cgltf_parse_file(&options, path, &data);
  if (result == cgltf_result_success) {
    DEBUG("gltf loaded succesfully");

    cgltf_load_buffers(&options, data, path);
    DEBUG("loaded buffers");

    // -- Load materials.
    // Each mesh will be handed a material
    TRACE("Num materials %d", data->materials_count);
    out_model->num_materials = data->materials_count;

    for (int m = 0; m < data->materials_count; m++) {
      cgltf_material gltf_material = data->materials[m];
      bh_material our_material = {0};

      str8 name = str8_copy(gltf_material.name);
      printf("Material name %s\n", name.buf);
      our_material.name = name;

      cgltf_pbr_metallic_roughness pbr = gltf_material.pbr_metallic_roughness;
      if (gltf_material.has_pbr_metallic_roughness) {
        // we will use base color texture like blinn phong
        cgltf_texture_view diff_tex = pbr.base_color_texture;
        strcpy(our_material.diffuse_tex_path, diff_tex.texture->image->uri);
      }

      bh_material_darray_push(materials, our_material);
    }

    // -- Load animations.
    TRACE("Num animations %d", data->animations_count);
    out_model->num_animations = data->animations_count;
    for (int anim_idx = 0; anim_idx < data->animations_count; anim_idx++) {
      cgltf_animation animation = data->animations[anim_idx];
      animation_clip our_animation = {0};

      // loop through each channel (track)
      for (int c = 0; c < animation.channels_count; c++) {
        // each channel (track) has a target and a sampler
        // for the time being we assume the target is the model itself
        cgltf_animation_channel channel = animation.channels[c];
        animation_track our_track = {0};
        our_track.interpolation = interpolation_fn_from_gltf(channel.sampler->interpolation);
        our_track.property = anim_prop_from_gltf(channel.target_path);

        // get the actual data out via the "accessor"
        // input will be the times

        // Keyframe times
        size_t n_frames = channel.sampler->input->count;
        our_track.num_keyframes = n_frames;
        f32 *times = malloc(sizeof(f32) * n_frames);
        our_track.keyframe_times = times;
        CASSERT_MSG(channel.sampler->input->component_type == cgltf_component_type_r_32f,
                    "Expected animation sampler input component to be type f32 (keyframe times)");
        cgltf_accessor_unpack_floats(channel.sampler->input, times, channel.sampler->input->count);

        // printf("keyframe times[\n");
        // for (int i = 0; i < n_frames; i++) {
        //   printf("  %f\n", times[i]);
        // }
        // printf("]\n");

        // Data!
        if (channel.target_path == cgltf_animation_path_type_rotation) {
          CASSERT(channel.sampler->output->component_type == cgltf_component_type_r_32f);
          CASSERT(channel.sampler->output->type == cgltf_type_vec4);
        }

        our_track.keyframes = malloc(sizeof(keyframe_data) * n_frames);
        for (cgltf_size v = 0; v < channel.sampler->output->count; ++v) {
          quat rot;
          cgltf_accessor_read_float(channel.sampler->output, v, &rot.x, 4);
          // vectors[v] = rot;
          // printf("Quat %f %f %f %f\n", rot.x, rot.y, rot.z, rot.w);
          our_track.keyframes[v].rotation = rot;
        }

        our_track.min_time = channel.sampler->input->min[0];
        our_track.max_time = channel.sampler->input->max[0];

        // printf("min time: %f max time %f\n", our_track.min_time, our_track.max_time);

        animation_track_darray_push(&our_animation.tracks, our_track);
      }

      out_model->animations[anim_idx] = our_animation;
    }

    // Load meshes
    TRACE("Num meshes %d", data->meshes_count);
    out_model->num_meshes = data->meshes_count;

    for (int m = 0; m < data->meshes_count; m++) {
      // at the moment we only handle one primitives per mesh
      // CASSERT(data->meshes[m].primitives_count == 1);

      // Load vertex data from FIRST primitive only
      cgltf_primitive primitive = data->meshes[m].primitives[0];
      DEBUG("Found %d attributes", primitive.attributes_count);
      for (int a = 0; a < data->meshes[m].primitives[0].attributes_count; a++) {
        cgltf_attribute attribute = data->meshes[m].primitives[0].attributes[a];
        if (attribute.type == cgltf_attribute_type_position) {
          TRACE("Load positions from accessor");

          cgltf_accessor *accessor = attribute.data;
          CASSERT(accessor->component_type == cgltf_component_type_r_32f);
          CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex positions should be a vec3");

          for (cgltf_size v = 0; v < accessor->count; ++v) {
            vec3 pos;
            cgltf_accessor_read_float(accessor, v, &pos.x, 3);
            kitc_darray_push(tmp_positions, &pos);
          }

        } else if (attribute.type == cgltf_attribute_type_normal) {
          TRACE("Load normals from accessor");

          cgltf_accessor *accessor = attribute.data;
          CASSERT(accessor->component_type == cgltf_component_type_r_32f);
          CASSERT_MSG(accessor->type == cgltf_type_vec3, "Normal vectors should be a vec3");

          for (cgltf_size v = 0; v < accessor->count; ++v) {
            vec3 pos;
            cgltf_accessor_read_float(accessor, v, &pos.x, 3);
            kitc_darray_push(tmp_normals, &pos);
          }

        } else if (attribute.type == cgltf_attribute_type_texcoord) {
          TRACE("Load texture coordinates from accessor");
          cgltf_accessor *accessor = attribute.data;
          CASSERT(accessor->component_type == cgltf_component_type_r_32f);
          CASSERT_MSG(accessor->type == cgltf_type_vec2, "Texture coordinates should be a vec2");

          for (cgltf_size v = 0; v < accessor->count; ++v) {
            vec2 tex;
            bool success = cgltf_accessor_read_float(accessor, v, &tex.x, 2);
            if (!success) {
              ERROR("Error loading tex coord");
            }
            kitc_darray_push(tmp_uvs, &tex);
          }
        } else if (attribute.type == cgltf_attribute_type_joints) {
          // handle joints

        } else {
          WARN("Unhandled cgltf_attribute_type: %s. skipping..", attribute.name);
        }
      }

      // Create mesh
      mesh mesh;
      mesh.vertices =
          kitc_darray_new(sizeof(mesh_vertex), data->meshes[m].primitives[0].attributes_count);

      // Flatten faces from indices if present otherwise push vertices verbatim
      cgltf_accessor *indices = primitive.indices;
      if (primitive.indices > 0) {
        mesh.has_indices = true;

        kitc_darray *element_indexes = kitc_darray_new(sizeof(cgltf_uint), indices->count);
        TRACE("Indices count %ld\n", indices->count);
        for (cgltf_size i = 0; i < indices->count; ++i) {
          cgltf_uint ei;
          cgltf_accessor_read_uint(indices, i, &ei, 1);
          kitc_darray_push(element_indexes, &ei);
        }

        kitc_darray_iter indices_iter = kitc_darray_iter_new(element_indexes);
        cgltf_uint *cur;
        while ((cur = kitc_darray_iter_next(&indices_iter))) {
          mesh_vertex vert;
          memcpy(&vert.position, &((vec3 *)tmp_positions->data)[*cur], sizeof(vec3));
          memcpy(&vert.normal, &((vec3 *)tmp_normals->data)[*cur], sizeof(vec3));
          memcpy(&vert.tex_coord, &((vec2 *)tmp_uvs->data)[*cur], sizeof(vec2));
          kitc_darray_push(mesh.vertices, &vert);
          // mesh_vertex_debug_print(vert);
        }
        // printf("indices: %ld, positions: %ld\n", kitc_darray_len(element_indexes),
        kitc_darray_free(element_indexes);
      } else {
        mesh.has_indices = false;

        bool calc_normals = false;
        if (kitc_darray_len(tmp_normals) == 0) {
          TRACE("No normals data is present. Normals will be calculated for you.");
          calc_normals = true;
        }
        for (int v = 0; v < kitc_darray_len(tmp_positions); v++) {
          mesh_vertex vert;
          memcpy(&vert.position, &((vec3 *)tmp_positions->data)[v], sizeof(vec3));
          if (!calc_normals) {
            memcpy(&vert.normal, &((vec3 *)tmp_normals->data)[v], sizeof(vec3));
          }
          memcpy(&vert.tex_coord, &((vec2 *)tmp_uvs->data)[v], sizeof(vec2));
          kitc_darray_push(mesh.vertices, &vert);
        }

        if (calc_normals) {
          if (mesh.has_indices) {
            // generate_normals_nonindexed(mesh.vertices);
          } else {
            generate_normals_nonindexed(mesh.vertices);
          }
        }
      }

      // Material
      if (primitive.material != NULL) {
        for (int i = 0; i < bh_material_darray_len(materials); i++) {
          if (strcmp(primitive.material->name, cstr(materials->data->name))) {
            TRACE("Found material");
            mesh.material_index = i;
            break;
          }
        }
      }

      // mesh.material_index = 0;  // TODO: make sure DEFAULT_MATERIAL is added at material index 0
      // TODO: material handling
      mesh.material_index = bh_material_darray_len(materials) - 1;

      calc_mesh_bounding_box(&mesh);
      // out_model->meshes.data[m] = mesh;
      mesh_darray_push(&out_model->meshes, mesh);

      kitc_darray_clear(tmp_positions);
      kitc_darray_clear(tmp_normals);
      kitc_darray_clear(tmp_uvs);
    }
    // End Load meshes

    // Load animations
    DEBUG("Num animations %d", data->animations_count);
    out_model->num_animations = data->animations_count;

    // End Load animations

    cgltf_free(data);
  } else {
    ERROR("Load failed");
    kitc_darray_free(tmp_positions);
    kitc_darray_free(tmp_normals);
    kitc_darray_free(tmp_uvs);
    return false;
  }

  for (int i = 0; i < materials->len; i++) {
    out_model->materials[i] = materials->data[i];
  }

  calc_model_bounding_box(out_model);

  DEBUG("Num meshes %d", out_model->num_meshes);
  DEBUG("Num materials %d", out_model->num_materials);
  DEBUG("Num animations %d", out_model->num_animations);

  CASSERT(out_model->num_materials == 1);

  kitc_darray_free(tmp_positions);
  kitc_darray_free(tmp_normals);
  kitc_darray_free(tmp_uvs);
  bh_material_darray_free(materials);

  TRACE("Finished loading GLTF");
  return true;
}
*/