summaryrefslogtreecommitdiff
path: root/archive/src/resources/gltf.c
diff options
context:
space:
mode:
authoromniscient <17525998+omnisci3nce@users.noreply.github.com>2024-10-05 12:48:05 +1000
committeromniscient <17525998+omnisci3nce@users.noreply.github.com>2024-10-05 12:48:05 +1000
commitdfb6adbcbcc7d50b770b6d5ea82efdd8f8c32e25 (patch)
treea470b91a90716d7ea46fde53ed395449c24583a2 /archive/src/resources/gltf.c
parent54354e32c6498cc7f8839ab4deb1208d37216cc5 (diff)
delete documentation workflow
Diffstat (limited to 'archive/src/resources/gltf.c')
-rw-r--r--archive/src/resources/gltf.c596
1 files changed, 596 insertions, 0 deletions
diff --git a/archive/src/resources/gltf.c b/archive/src/resources/gltf.c
new file mode 100644
index 0000000..66ae1b6
--- /dev/null
+++ b/archive/src/resources/gltf.c
@@ -0,0 +1,596 @@
+#include <assert.h>
+#include <stdlib.h>
+#include <string.h>
+#include "animation.h"
+#include "colours.h"
+#include "core.h"
+#include "defines.h"
+#include "file.h"
+#include "loaders.h"
+#include "log.h"
+#include "maths.h"
+#include "maths_types.h"
+#include "mem.h"
+#include "pbr.h"
+#include "platform.h"
+#include "ral_types.h"
+#include "render.h"
+#include "render_types.h"
+#include "str.h"
+
+#define CGLTF_IMPLEMENTATION
+#include <cgltf.h>
+
+extern Core g_core;
+
+/* GLTF Loading Pipeline
+ ===================== */
+
+struct face {
+ cgltf_uint indices[3];
+};
+typedef struct face face;
+
+KITC_DECL_TYPED_ARRAY(Vec3)
+KITC_DECL_TYPED_ARRAY(Vec2)
+KITC_DECL_TYPED_ARRAY(Vec4u)
+KITC_DECL_TYPED_ARRAY(Vec4i)
+KITC_DECL_TYPED_ARRAY(Vec4)
+KITC_DECL_TYPED_ARRAY(face)
+KITC_DECL_TYPED_ARRAY(i32)
+
+size_t GLTF_LoadMaterials(cgltf_data* data, Str8 relative_path, Material_darray* out_materials);
+
+ModelHandle ModelLoad_gltf(const char* path, bool invert_texture_y) {
+ size_t arena_size = MB(1);
+ arena scratch = arena_create(malloc(arena_size), arena_size);
+
+ TRACE("Loading model at Path %s\n", path);
+ path_opt relative_path = path_parent(&scratch, path);
+ if (!relative_path.has_value) {
+ WARN("Couldnt get a relative path for the path to use for loading materials & textures later");
+ }
+ const char* file_string = string_from_file(path);
+
+ ModelHandle handle;
+ Model* model = Model_pool_alloc(&g_core.models, &handle);
+ model->name = Str8_cstr_view(path);
+
+ bool success =
+ model_load_gltf_str(file_string, path, relative_path.path, model, invert_texture_y);
+
+ if (!success) {
+ FATAL("Couldnt load GLTF file at path %s", path);
+ ERROR_EXIT("Load fails are considered crash-worthy right now. This will change later.\n");
+ }
+
+ arena_free_all(&scratch);
+ arena_free_storage(&scratch);
+ return handle;
+}
+
+void assert_path_type_matches_component_type(cgltf_animation_path_type target_path,
+ cgltf_accessor* output) {
+ if (target_path == cgltf_animation_path_type_rotation) {
+ assert(output->component_type == cgltf_component_type_r_32f);
+ assert(output->type == cgltf_type_vec4);
+ }
+}
+
+// TODO: Brainstorm how I can make this simpler and break it up into more testable pieces
+
+void load_position_components(Vec3_darray* positions, cgltf_accessor* accessor) {
+ TRACE("Loading %d vec3 position components", accessor->count);
+ CASSERT_MSG(accessor->component_type == cgltf_component_type_r_32f,
+ "Positions components are floats");
+ CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex positions should be a vec3");
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ Vec3 pos;
+ cgltf_accessor_read_float(accessor, v, &pos.x, 3);
+ Vec3_darray_push(positions, pos);
+ }
+}
+
+void load_normal_components(Vec3_darray* normals, cgltf_accessor* accessor) {
+ TRACE("Loading %d vec3 normal components", accessor->count);
+ CASSERT_MSG(accessor->component_type == cgltf_component_type_r_32f,
+ "Normal vector components are floats");
+ CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex normals should be a vec3");
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ Vec3 pos;
+ cgltf_accessor_read_float(accessor, v, &pos.x, 3);
+ Vec3_darray_push(normals, pos);
+ }
+}
+
+void load_texcoord_components(Vec2_darray* texcoords, cgltf_accessor* accessor) {
+ TRACE("Load texture coordinates from accessor");
+ CASSERT(accessor->component_type == cgltf_component_type_r_32f);
+ CASSERT_MSG(accessor->type == cgltf_type_vec2, "Texture coordinates should be a vec2");
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ Vec2 tex;
+ bool success = cgltf_accessor_read_float(accessor, v, &tex.x, 2);
+ if (!success) {
+ ERROR("Error loading tex coord");
+ }
+ Vec2_darray_push(texcoords, tex);
+ }
+}
+
+void load_joint_index_components(Vec4i_darray* joint_indices, cgltf_accessor* accessor) {
+ TRACE("Load joint indices from accessor");
+ CASSERT(accessor->component_type == cgltf_component_type_r_16u);
+ CASSERT_MSG(accessor->type == cgltf_type_vec4, "Joint indices should be a vec4");
+ Vec4i tmp_joint_index;
+ Vec4 joints_as_floats;
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ cgltf_accessor_read_float(accessor, v, &joints_as_floats.x, 4);
+ tmp_joint_index.x = (u32)joints_as_floats.x;
+ tmp_joint_index.y = (u32)joints_as_floats.y;
+ tmp_joint_index.z = (u32)joints_as_floats.z;
+ tmp_joint_index.w = (u32)joints_as_floats.w;
+ printf("Joints affecting vertex %d : %d %d %d %d\n", v, tmp_joint_index.x, tmp_joint_index.y,
+ tmp_joint_index.z, tmp_joint_index.w);
+ Vec4i_darray_push(joint_indices, tmp_joint_index);
+ }
+}
+
+bool model_load_gltf_str(const char* file_string, const char* filepath, Str8 relative_path,
+ Model* out_model, bool invert_textures_y) {
+ TRACE("Load GLTF from string");
+
+ // Setup temps
+ Vec3_darray* tmp_positions = Vec3_darray_new(1000);
+ Vec3_darray* tmp_normals = Vec3_darray_new(1000);
+ Vec2_darray* tmp_uvs = Vec2_darray_new(1000);
+ Vec4i_darray* tmp_joint_indices = Vec4i_darray_new(1000);
+ Vec4_darray* tmp_weights = Vec4_darray_new(1000);
+ Material_darray* tmp_materials = Material_darray_new(1);
+ Mesh_darray* tmp_meshes = Mesh_darray_new(1);
+ i32_darray* tmp_material_indexes = i32_darray_new(1);
+
+ Joint_darray* joints = Joint_darray_new(256);
+
+ cgltf_options options = { 0 };
+ cgltf_data* data = NULL;
+ cgltf_result result = cgltf_parse_file(&options, filepath, &data);
+ if (result != cgltf_result_success) {
+ WARN("gltf load failed");
+ // TODO: cleanup arrays(allocate all from arena ?)
+ return false;
+ }
+
+ cgltf_load_buffers(&options, data, filepath);
+ DEBUG("loaded buffers");
+
+ // --- Skin
+ size_t num_skins = data->skins_count;
+ bool is_skinned = false;
+ Armature main_skeleton = { 0 };
+ if (num_skins == 1) {
+ is_skinned = true;
+ } else if (num_skins > 1) {
+ WARN("GLTF files with more than 1 skin are not supported");
+ return false;
+ }
+
+ if (is_skinned) {
+ cgltf_skin* gltf_skin = data->skins;
+ DEBUG("loading skin %s", gltf_skin->name);
+ size_t num_joints = gltf_skin->joints_count;
+ DEBUG("# Joints %d", num_joints);
+
+ // Create our data that will be placed onto the model
+ Armature armature = { .label = "test_skin" };
+ printf("Skin %s\n", gltf_skin->name);
+ // armature.label = Clone_cstr(&armature.arena, gltf_skin->name);
+ armature.joints = joints; // ! Make sure not to free this
+
+ cgltf_accessor* gltf_inverse_bind_matrices = gltf_skin->inverse_bind_matrices;
+
+ // --- Joints
+ // for each one we'll spit out a joint
+ for (size_t i = 0; i < num_joints; i++) {
+ // Get the joint and assign its node index for later referencing
+ cgltf_node* joint_node = gltf_skin->joints[i];
+ TRACE("Joint %d (node index %d)", i, cgltf_node_index(data, joint_node));
+ Joint joint_i = { .debug_label = "test_joint",
+ .node_idx = cgltf_node_index(data, joint_node),
+ .inverse_bind_matrix = mat4_ident() };
+
+ if (joint_node->children_count > 0 && !joint_node->has_translation &&
+ !joint_node->has_rotation) {
+ WARN("Joint node with index %d is the root node", i);
+ joint_i.transform_components = TRANSFORM_DEFAULT;
+ joint_i.parent = -1;
+ for (u32 c_i = 0; c_i < joint_node->children_count; c_i++) {
+ joint_i.children[c_i] = cgltf_node_index(data, joint_node->children[c_i]);
+ joint_i.children_count++;
+ }
+ } else {
+ TRACE("Storing joint transform");
+ joint_i.transform_components = TRANSFORM_DEFAULT;
+ if (joint_node->has_translation) {
+ memcpy(&joint_i.transform_components.position, &joint_node->translation, 3 * sizeof(f32));
+ }
+ if (joint_node->has_rotation) {
+ memcpy(&joint_i.transform_components.rotation, &joint_node->rotation, 4 * sizeof(f32));
+ }
+ if (joint_node->has_scale) {
+ memcpy(&joint_i.transform_components.scale, &joint_node->scale, 3 * sizeof(f32));
+ }
+ joint_i.parent = cgltf_node_index(data, joint_node->parent);
+ }
+ // Calculate and store the starting transform of the joint
+ joint_i.local_transform = transform_to_mat(&joint_i.transform_components);
+ // Read in the inverse bind matrix
+ cgltf_accessor_read_float(gltf_inverse_bind_matrices, i, &joint_i.inverse_bind_matrix.data[0],
+ 16);
+ Joint_darray_push(armature.joints, joint_i);
+ }
+ main_skeleton = armature;
+ // out_model->armature = armature;
+ // out_model->has_joints = true;
+ }
+
+ // --- Materials
+ size_t num_materials = GLTF_LoadMaterials(data, relative_path, tmp_materials);
+
+ // --- Meshes
+ size_t num_meshes = data->meshes_count;
+ TRACE("Num meshes %d", num_meshes);
+ for (size_t m = 0; m < num_meshes; m++) {
+ printf("Primitive count %d\n", data->meshes[m].primitives_count);
+ for (size_t prim_i = 0; prim_i < data->meshes[m].primitives_count; prim_i++) {
+ DEBUG("Primitive %d\n", prim_i);
+
+ cgltf_primitive primitive = data->meshes[m].primitives[prim_i];
+ DEBUG("Found %d attributes", primitive.attributes_count);
+
+ for (cgltf_size a = 0; a < primitive.attributes_count; a++) {
+ cgltf_attribute attribute = primitive.attributes[a];
+ if (attribute.type == cgltf_attribute_type_position) {
+ cgltf_accessor* accessor = attribute.data;
+ load_position_components(tmp_positions, accessor);
+ } else if (attribute.type == cgltf_attribute_type_normal) {
+ cgltf_accessor* accessor = attribute.data;
+ load_normal_components(tmp_normals, accessor);
+ } else if (attribute.type == cgltf_attribute_type_texcoord) {
+ cgltf_accessor* accessor = attribute.data;
+ load_texcoord_components(tmp_uvs, accessor);
+ } else if (attribute.type == cgltf_attribute_type_joints) {
+ TRACE("Load joint indices from accessor");
+ cgltf_accessor* accessor = attribute.data;
+ load_joint_index_components(tmp_joint_indices, accessor);
+ } else if (attribute.type == cgltf_attribute_type_weights) {
+ TRACE("Load joint weights from accessor");
+ cgltf_accessor* accessor = attribute.data;
+ CASSERT(accessor->component_type == cgltf_component_type_r_32f);
+ CASSERT(accessor->type == cgltf_type_vec4);
+
+ for (cgltf_size v = 0; v < accessor->count; ++v) {
+ Vec4 weights;
+ cgltf_accessor_read_float(accessor, v, &weights.x, 4);
+ printf("Weights affecting vertex %d : %f %f %f %f\n", v, weights.x, weights.y,
+ weights.z, weights.w);
+ Vec4_darray_push(tmp_weights, weights);
+ }
+ } else {
+ WARN("Unhandled cgltf_attribute_type: %s. skipping..", attribute.name);
+ }
+ }
+ // mesh.vertex_bone_data = vertex_bone_data_darray_new(1);
+ i32 mat_idx = -1;
+ if (primitive.material != NULL) {
+ DEBUG("Primitive Material %s", primitive.material->name);
+ // FIXME!
+ for (u32 i = 0; i < Material_darray_len(tmp_materials); i++) {
+ printf("%s vs %s \n", primitive.material->name, tmp_materials->data[i].name);
+ if (strcmp(primitive.material->name, tmp_materials->data[i].name) == 0) {
+ INFO("Found material");
+ mat_idx = i;
+ i32_darray_push(tmp_material_indexes, mat_idx);
+ break;
+ }
+ }
+ } else {
+ i32_darray_push(tmp_material_indexes, -1);
+ }
+
+ TRACE("Vertex data has been loaded");
+
+ Vertex_darray* geo_vertices = Vertex_darray_new(3);
+ u32_darray* geo_indices = u32_darray_new(0);
+
+ // Store vertices
+ printf("Positions %d Normals %d UVs %d\n", tmp_positions->len, tmp_normals->len,
+ tmp_uvs->len);
+ // assert(tmp_positions->len == tmp_normals->len);
+ // assert(tmp_normals->len == tmp_uvs->len);
+ bool has_normals = tmp_normals->len > 0;
+ bool has_uvs = tmp_uvs->len > 0;
+ for (u32 v_i = 0; v_i < tmp_positions->len; v_i++) {
+ Vertex v = { 0 };
+ if (is_skinned) {
+ v.skinned_3d.position = tmp_positions->data[v_i];
+ v.skinned_3d.normal = has_normals ? tmp_normals->data[v_i] : VEC3_ZERO,
+ v.skinned_3d.tex_coords = has_uvs ? tmp_uvs->data[v_i] : vec2_create(0., 0.);
+ v.skinned_3d.bone_ids = tmp_joint_indices->data[v_i];
+ v.skinned_3d.bone_weights = tmp_weights->data[v_i];
+ } else {
+ v.static_3d.position = tmp_positions->data[v_i];
+ v.static_3d.normal = has_normals ? tmp_normals->data[v_i] : VEC3_ZERO,
+ v.static_3d.tex_coords = has_uvs ? tmp_uvs->data[v_i] : vec2_create(0., 0.);
+ }
+ Vertex_darray_push(geo_vertices, v);
+ };
+
+ // Store indices
+ cgltf_accessor* indices = primitive.indices;
+ if (primitive.indices > 0) {
+ WARN("indices! %d", indices->count);
+
+ // store indices
+ for (cgltf_size i = 0; i < indices->count; ++i) {
+ cgltf_uint ei;
+ cgltf_accessor_read_uint(indices, i, &ei, 1);
+ u32_darray_push(geo_indices, ei);
+ }
+
+ Geometry* geometry = malloc(sizeof(Geometry));
+ geometry->format = is_skinned ? VERTEX_SKINNED : VERTEX_STATIC_3D;
+ geometry->has_indices = true;
+ geometry->vertices = geo_vertices;
+ geometry->indices = geo_indices;
+ geometry->index_count = geo_indices->len;
+
+ Mesh m = Mesh_Create(geometry, false);
+ if (is_skinned) {
+ m.is_skinned = true;
+ m.armature = main_skeleton;
+ }
+ Mesh_darray_push(tmp_meshes, m);
+
+ Vec3_darray_clear(tmp_positions);
+ Vec3_darray_clear(tmp_normals);
+ Vec2_darray_clear(tmp_uvs);
+ Vec4i_darray_clear(tmp_joint_indices);
+ Vec4_darray_clear(tmp_weights);
+ } else {
+ WARN("No indices found. Ignoring mesh...");
+ }
+ }
+
+ // --- Animations
+ size_t num_animations = data->animations_count;
+ TRACE("Num animations %d", num_animations);
+
+ if (num_animations > 0) {
+ if (!out_model->animations) {
+ out_model->animations = AnimationClip_darray_new(num_animations);
+ }
+ out_model->anim_arena = arena_create(malloc(MB(1)), MB(1));
+ arena* arena = &out_model->anim_arena;
+
+ // Iterate over each animation in the GLTF
+ for (int anim_idx = 0; anim_idx < data->animations_count; anim_idx++) {
+ cgltf_animation animation = data->animations[anim_idx];
+ AnimationClip clip = { 0 };
+ clip.clip_name = "test anim clip";
+ clip.channels = AnimationSampler_darray_new(1);
+
+ // for each animation, loop through all the channels
+ for (size_t c = 0; c < animation.channels_count; c++) {
+ cgltf_animation_channel channel = animation.channels[c];
+
+ AnimationSampler sampler = { 0 };
+
+ KeyframeKind data_type;
+
+ switch (channel.target_path) {
+ case cgltf_animation_path_type_rotation:
+ data_type = KEYFRAME_ROTATION;
+ break;
+ case cgltf_animation_path_type_translation:
+ data_type = KEYFRAME_TRANSLATION;
+ break;
+ case cgltf_animation_path_type_scale:
+ data_type = KEYFRAME_SCALE;
+ break;
+ case cgltf_animation_path_type_weights:
+ data_type = KEYFRAME_WEIGHTS;
+ WARN("Morph target weights arent supported yet");
+ return false;
+ default:
+ WARN("unsupported animation type");
+ return false;
+ }
+
+ sampler.current_index = 0;
+ sampler.animation.interpolation = INTERPOLATION_LINEAR; // NOTE: hardcoded for now
+
+ // Keyframe times
+ size_t n_frames = channel.sampler->input->count;
+ CASSERT_MSG(channel.sampler->input->component_type == cgltf_component_type_r_32f,
+ "Expected animation sampler input component to be type f32");
+ f32* times = arena_alloc(arena, n_frames * sizeof(f32));
+ sampler.animation.n_timestamps = n_frames;
+ sampler.animation.timestamps = times;
+ cgltf_accessor_unpack_floats(channel.sampler->input, times, n_frames);
+
+ // Keyframe values
+ size_t n_values = channel.sampler->output->count;
+ CASSERT_MSG(n_frames == n_values, "keyframe times = keyframe values");
+
+ Keyframes keyframes = { 0 };
+ keyframes.kind = data_type;
+ keyframes.count = n_values;
+ keyframes.values = arena_alloc(arena, n_values * sizeof(Keyframe));
+ for (cgltf_size v = 0; v < channel.sampler->output->count; ++v) {
+ switch (data_type) {
+ case KEYFRAME_ROTATION: {
+ Quat rot;
+ cgltf_accessor_read_float(channel.sampler->output, v, &rot.x, 4);
+ // printf("Quat %f %f %f %f\n", rot.x, rot.y, rot.z, rot.w);
+ keyframes.values[v].rotation = rot;
+ break;
+ }
+ case KEYFRAME_TRANSLATION: {
+ Vec3 trans;
+ cgltf_accessor_read_float(channel.sampler->output, v, &trans.x, 3);
+ keyframes.values[v].translation = trans;
+ break;
+ }
+ case KEYFRAME_SCALE: {
+ Vec3 scale;
+ cgltf_accessor_read_float(channel.sampler->output, v, &scale.x, 3);
+ keyframes.values[v].scale = scale;
+ break;
+ }
+ case KEYFRAME_WEIGHTS: {
+ // TODO: morph weights
+ break;
+ }
+ }
+ }
+ sampler.animation.values = keyframes;
+ sampler.min = channel.sampler->input->min[0];
+ sampler.max = channel.sampler->input->max[0];
+
+ // *target_property = sampler;
+ printf("%d timestamps between %f and %f\n", sampler.animation.n_timestamps, sampler.min,
+ sampler.max);
+
+ // TODO: get target
+ size_t target_index = cgltf_node_index(data, channel.target_node);
+ size_t joint_index = 0;
+ bool found = false;
+ for (u32 ji = 0; ji < main_skeleton.joints->len; ji++) {
+ if (main_skeleton.joints->data[ji].node_idx == target_index) {
+ joint_index = ji;
+ found = true;
+ break;
+ }
+ }
+ if (!found) {
+ WARN("Coulndnt find joint index");
+ }
+ sampler.target_joint_idx =
+ joint_index; // NOTE: this assuming the target is a joint at the moment
+ AnimationSampler_darray_push(clip.channels, sampler);
+ }
+
+ AnimationClip_darray_push(out_model->animations, clip);
+ }
+ }
+
+ // exit(0);
+ }
+
+ num_meshes = tmp_meshes->len;
+
+ // we now have an array of meshes, materials, and the material which each mesh should get
+ out_model->meshes = malloc(num_meshes * sizeof(MeshHandle));
+ out_model->mesh_count = num_meshes;
+ out_model->materials = malloc(num_materials * sizeof(MaterialHandle));
+ out_model->material_count = num_materials;
+
+ MaterialHandle* mat_handles = calloc(num_materials, sizeof(MaterialHandle));
+ for (u32 mat_i = 0; mat_i < num_materials; mat_i++) {
+ mat_handles[mat_i] =
+ Material_pool_insert(Render_GetMaterialPool(), &tmp_materials->data[mat_i]);
+ }
+ memcpy(out_model->materials, mat_handles, num_materials * sizeof(MaterialHandle));
+
+ for (u32 mesh_i = 0; mesh_i < num_meshes; mesh_i++) {
+ i32 mat_idx = tmp_material_indexes->data[mesh_i];
+ if (mat_idx > 0) {
+ tmp_meshes->data[mesh_i].material = mat_handles[mat_idx];
+
+ } else {
+ Material default_mat = PBRMaterialDefault();
+ tmp_meshes->data[mesh_i].material =
+ Material_pool_insert(Render_GetMaterialPool(), &default_mat);
+ }
+ MeshHandle mesh = Mesh_pool_insert(Render_GetMeshPool(), &tmp_meshes->data[mesh_i]);
+ out_model->meshes[mesh_i] = mesh;
+ }
+
+ free(mat_handles);
+
+ return true;
+}
+
+const char* bool_yes_no(bool pred) { return pred ? "Yes" : "No"; }
+
+// Loads all materials
+size_t GLTF_LoadMaterials(cgltf_data* data, Str8 relative_path, Material_darray* out_materials) {
+ size_t num_materials = data->materials_count;
+ TRACE("Num materials %d", num_materials);
+ for (size_t m = 0; m < num_materials; m++) {
+ cgltf_material gltf_material = data->materials[m];
+ TRACE("Loading material '%s'", gltf_material.name);
+ cgltf_pbr_metallic_roughness pbr = gltf_material.pbr_metallic_roughness;
+
+ Material our_material = PBRMaterialDefault(); // focusing on PBR materials for now
+
+ our_material.base_colour =
+ vec3(pbr.base_color_factor[0], pbr.base_color_factor[1], pbr.base_color_factor[2]);
+ our_material.metallic = pbr.metallic_factor;
+ our_material.roughness = pbr.roughness_factor;
+
+ // -- albedo / base colour
+ cgltf_texture_view albedo_tex_view = pbr.base_color_texture;
+ bool has_albedo_texture = albedo_tex_view.texture != NULL;
+ TRACE("Has PBR base colour texture? %s", bool_yes_no(has_albedo_texture));
+ printf("Base colour factor: %f %f %f\n", pbr.base_color_factor[0], pbr.base_color_factor[1],
+ pbr.base_color_factor[2]);
+ if (has_albedo_texture) {
+ char albedo_map_path[1024];
+ snprintf(albedo_map_path, sizeof(albedo_map_path), "%s/%s", relative_path.buf,
+ albedo_tex_view.texture->image->uri);
+ our_material.albedo_map = TextureLoadFromFile(albedo_map_path);
+ } else {
+ our_material.albedo_map = Render_GetWhiteTexture();
+ WARN("GLTF model has no albedo map");
+ our_material.base_colour =
+ vec3_create(pbr.base_color_factor[0], pbr.base_color_factor[1], pbr.base_color_factor[2]);
+ }
+
+ // -- metallic
+ cgltf_texture_view metal_rough_tex_view = pbr.metallic_roughness_texture;
+ printf("Metal factor: %f\n", pbr.metallic_factor);
+ printf("Roughness factor: %f\n", pbr.roughness_factor);
+ if (metal_rough_tex_view.texture != NULL) {
+ char metal_rough_map_path[1024];
+ snprintf(metal_rough_map_path, sizeof(metal_rough_map_path), "%s/%s", relative_path.buf,
+ metal_rough_tex_view.texture->image->uri);
+ our_material.metallic_roughness_map = TextureLoadFromFile(metal_rough_map_path);
+ } else {
+ WARN("GLTF model has no metal/roughness map");
+ our_material.metallic = pbr.metallic_factor;
+ our_material.roughness = pbr.roughness_factor;
+ }
+
+ cgltf_texture_view normal_tex_view = gltf_material.normal_texture;
+ if (normal_tex_view.texture != NULL) {
+ char normal_map_path[1024];
+ snprintf(normal_map_path, sizeof(normal_map_path), "%s/%s", relative_path.buf,
+ normal_tex_view.texture->image->uri);
+ our_material.normal_map = TextureLoadFromFile(normal_map_path);
+ } else {
+ WARN("GLTF model has no normal map");
+ }
+
+ u32 string_length = strlen(gltf_material.name) + 1;
+ assert(string_length < 64);
+ strcpy(our_material.name, gltf_material.name);
+
+ Material_darray_push(out_materials, our_material);
+ }
+
+ return out_materials->len;
+}