diff options
author | Omniscient <17525998+omnisci3nce@users.noreply.github.com> | 2024-02-24 22:47:46 +1100 |
---|---|---|
committer | Omniscient <17525998+omnisci3nce@users.noreply.github.com> | 2024-02-24 22:47:46 +1100 |
commit | 7b3afcaf77f96e7d62f6cd1623ead7f17512d79f (patch) | |
tree | b5f82c64e9c06a84e4d095ab4ac48712e860b673 /deps/glfw-3.3.8/examples/particles.c | |
parent | b047be5252aeb981faea077409c1768fda0301d9 (diff) |
repo init. partial port of existing code
Diffstat (limited to 'deps/glfw-3.3.8/examples/particles.c')
-rw-r--r-- | deps/glfw-3.3.8/examples/particles.c | 1073 |
1 files changed, 1073 insertions, 0 deletions
diff --git a/deps/glfw-3.3.8/examples/particles.c b/deps/glfw-3.3.8/examples/particles.c new file mode 100644 index 0000000..9556cca --- /dev/null +++ b/deps/glfw-3.3.8/examples/particles.c @@ -0,0 +1,1073 @@ +//======================================================================== +// A simple particle engine with threaded physics +// Copyright (c) Marcus Geelnard +// Copyright (c) Camilla Löwy <elmindreda@glfw.org> +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would +// be appreciated but is not required. +// +// 2. Altered source versions must be plainly marked as such, and must not +// be misrepresented as being the original software. +// +// 3. This notice may not be removed or altered from any source +// distribution. +// +//======================================================================== + +#if defined(_MSC_VER) + // Make MS math.h define M_PI + #define _USE_MATH_DEFINES +#endif + +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include <math.h> +#include <time.h> + +#include <tinycthread.h> +#include <getopt.h> +#include <linmath.h> + +#include <glad/gl.h> +#define GLFW_INCLUDE_NONE +#include <GLFW/glfw3.h> + +// Define tokens for GL_EXT_separate_specular_color if not already defined +#ifndef GL_EXT_separate_specular_color +#define GL_LIGHT_MODEL_COLOR_CONTROL_EXT 0x81F8 +#define GL_SINGLE_COLOR_EXT 0x81F9 +#define GL_SEPARATE_SPECULAR_COLOR_EXT 0x81FA +#endif // GL_EXT_separate_specular_color + + +//======================================================================== +// Type definitions +//======================================================================== + +typedef struct +{ + float x, y, z; +} Vec3; + +// This structure is used for interleaved vertex arrays (see the +// draw_particles function) +// +// NOTE: This structure SHOULD be packed on most systems. It uses 32-bit fields +// on 32-bit boundaries, and is a multiple of 64 bits in total (6x32=3x64). If +// it does not work, try using pragmas or whatever to force the structure to be +// packed. +typedef struct +{ + GLfloat s, t; // Texture coordinates + GLuint rgba; // Color (four ubytes packed into an uint) + GLfloat x, y, z; // Vertex coordinates +} Vertex; + + +//======================================================================== +// Program control global variables +//======================================================================== + +// Window dimensions +float aspect_ratio; + +// "wireframe" flag (true if we use wireframe view) +int wireframe; + +// Thread synchronization +struct { + double t; // Time (s) + float dt; // Time since last frame (s) + int p_frame; // Particle physics frame number + int d_frame; // Particle draw frame number + cnd_t p_done; // Condition: particle physics done + cnd_t d_done; // Condition: particle draw done + mtx_t particles_lock; // Particles data sharing mutex +} thread_sync; + + +//======================================================================== +// Texture declarations (we hard-code them into the source code, since +// they are so simple) +//======================================================================== + +#define P_TEX_WIDTH 8 // Particle texture dimensions +#define P_TEX_HEIGHT 8 +#define F_TEX_WIDTH 16 // Floor texture dimensions +#define F_TEX_HEIGHT 16 + +// Texture object IDs +GLuint particle_tex_id, floor_tex_id; + +// Particle texture (a simple spot) +const unsigned char particle_texture[ P_TEX_WIDTH * P_TEX_HEIGHT ] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x11, 0x22, 0x22, 0x11, 0x00, 0x00, + 0x00, 0x11, 0x33, 0x88, 0x77, 0x33, 0x11, 0x00, + 0x00, 0x22, 0x88, 0xff, 0xee, 0x77, 0x22, 0x00, + 0x00, 0x22, 0x77, 0xee, 0xff, 0x88, 0x22, 0x00, + 0x00, 0x11, 0x33, 0x77, 0x88, 0x33, 0x11, 0x00, + 0x00, 0x00, 0x11, 0x33, 0x22, 0x11, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 +}; + +// Floor texture (your basic checkered floor) +const unsigned char floor_texture[ F_TEX_WIDTH * F_TEX_HEIGHT ] = { + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, + 0xff, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, + 0xf0, 0xcc, 0xee, 0xff, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x66, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xee, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, + 0xf0, 0xf0, 0xf0, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x55, 0x30, 0x30, 0x44, 0x30, 0x30, + 0xf0, 0xdd, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x60, 0x30, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, + 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x33, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0x30, 0x30, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30, 0xf0, 0xff, 0xf0, 0xf0, 0xdd, 0xf0, 0xf0, 0xff, + 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x55, 0x33, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0, + 0x30, 0x44, 0x66, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xaa, 0xf0, 0xf0, 0xcc, 0xf0, + 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xff, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xdd, 0xf0, + 0x30, 0x30, 0x30, 0x77, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, +}; + + +//======================================================================== +// These are fixed constants that control the particle engine. In a +// modular world, these values should be variables... +//======================================================================== + +// Maximum number of particles +#define MAX_PARTICLES 3000 + +// Life span of a particle (in seconds) +#define LIFE_SPAN 8.f + +// A new particle is born every [BIRTH_INTERVAL] second +#define BIRTH_INTERVAL (LIFE_SPAN/(float)MAX_PARTICLES) + +// Particle size (meters) +#define PARTICLE_SIZE 0.7f + +// Gravitational constant (m/s^2) +#define GRAVITY 9.8f + +// Base initial velocity (m/s) +#define VELOCITY 8.f + +// Bounce friction (1.0 = no friction, 0.0 = maximum friction) +#define FRICTION 0.75f + +// "Fountain" height (m) +#define FOUNTAIN_HEIGHT 3.f + +// Fountain radius (m) +#define FOUNTAIN_RADIUS 1.6f + +// Minimum delta-time for particle phisics (s) +#define MIN_DELTA_T (BIRTH_INTERVAL * 0.5f) + + +//======================================================================== +// Particle system global variables +//======================================================================== + +// This structure holds all state for a single particle +typedef struct { + float x,y,z; // Position in space + float vx,vy,vz; // Velocity vector + float r,g,b; // Color of particle + float life; // Life of particle (1.0 = newborn, < 0.0 = dead) + int active; // Tells if this particle is active +} PARTICLE; + +// Global vectors holding all particles. We use two vectors for double +// buffering. +static PARTICLE particles[MAX_PARTICLES]; + +// Global variable holding the age of the youngest particle +static float min_age; + +// Color of latest born particle (used for fountain lighting) +static float glow_color[4]; + +// Position of latest born particle (used for fountain lighting) +static float glow_pos[4]; + + +//======================================================================== +// Object material and fog configuration constants +//======================================================================== + +const GLfloat fountain_diffuse[4] = { 0.7f, 1.f, 1.f, 1.f }; +const GLfloat fountain_specular[4] = { 1.f, 1.f, 1.f, 1.f }; +const GLfloat fountain_shininess = 12.f; +const GLfloat floor_diffuse[4] = { 1.f, 0.6f, 0.6f, 1.f }; +const GLfloat floor_specular[4] = { 0.6f, 0.6f, 0.6f, 1.f }; +const GLfloat floor_shininess = 18.f; +const GLfloat fog_color[4] = { 0.1f, 0.1f, 0.1f, 1.f }; + + +//======================================================================== +// Print usage information +//======================================================================== + +static void usage(void) +{ + printf("Usage: particles [-bfhs]\n"); + printf("Options:\n"); + printf(" -f Run in full screen\n"); + printf(" -h Display this help\n"); + printf(" -s Run program as single thread (default is to use two threads)\n"); + printf("\n"); + printf("Program runtime controls:\n"); + printf(" W Toggle wireframe mode\n"); + printf(" Esc Exit program\n"); +} + + +//======================================================================== +// Initialize a new particle +//======================================================================== + +static void init_particle(PARTICLE *p, double t) +{ + float xy_angle, velocity; + + // Start position of particle is at the fountain blow-out + p->x = 0.f; + p->y = 0.f; + p->z = FOUNTAIN_HEIGHT; + + // Start velocity is up (Z)... + p->vz = 0.7f + (0.3f / 4096.f) * (float) (rand() & 4095); + + // ...and a randomly chosen X/Y direction + xy_angle = (2.f * (float) M_PI / 4096.f) * (float) (rand() & 4095); + p->vx = 0.4f * (float) cos(xy_angle); + p->vy = 0.4f * (float) sin(xy_angle); + + // Scale velocity vector according to a time-varying velocity + velocity = VELOCITY * (0.8f + 0.1f * (float) (sin(0.5 * t) + sin(1.31 * t))); + p->vx *= velocity; + p->vy *= velocity; + p->vz *= velocity; + + // Color is time-varying + p->r = 0.7f + 0.3f * (float) sin(0.34 * t + 0.1); + p->g = 0.6f + 0.4f * (float) sin(0.63 * t + 1.1); + p->b = 0.6f + 0.4f * (float) sin(0.91 * t + 2.1); + + // Store settings for fountain glow lighting + glow_pos[0] = 0.4f * (float) sin(1.34 * t); + glow_pos[1] = 0.4f * (float) sin(3.11 * t); + glow_pos[2] = FOUNTAIN_HEIGHT + 1.f; + glow_pos[3] = 1.f; + glow_color[0] = p->r; + glow_color[1] = p->g; + glow_color[2] = p->b; + glow_color[3] = 1.f; + + // The particle is new-born and active + p->life = 1.f; + p->active = 1; +} + + +//======================================================================== +// Update a particle +//======================================================================== + +#define FOUNTAIN_R2 (FOUNTAIN_RADIUS+PARTICLE_SIZE/2)*(FOUNTAIN_RADIUS+PARTICLE_SIZE/2) + +static void update_particle(PARTICLE *p, float dt) +{ + // If the particle is not active, we need not do anything + if (!p->active) + return; + + // The particle is getting older... + p->life -= dt * (1.f / LIFE_SPAN); + + // Did the particle die? + if (p->life <= 0.f) + { + p->active = 0; + return; + } + + // Apply gravity + p->vz = p->vz - GRAVITY * dt; + + // Update particle position + p->x = p->x + p->vx * dt; + p->y = p->y + p->vy * dt; + p->z = p->z + p->vz * dt; + + // Simple collision detection + response + if (p->vz < 0.f) + { + // Particles should bounce on the fountain (with friction) + if ((p->x * p->x + p->y * p->y) < FOUNTAIN_R2 && + p->z < (FOUNTAIN_HEIGHT + PARTICLE_SIZE / 2)) + { + p->vz = -FRICTION * p->vz; + p->z = FOUNTAIN_HEIGHT + PARTICLE_SIZE / 2 + + FRICTION * (FOUNTAIN_HEIGHT + + PARTICLE_SIZE / 2 - p->z); + } + + // Particles should bounce on the floor (with friction) + else if (p->z < PARTICLE_SIZE / 2) + { + p->vz = -FRICTION * p->vz; + p->z = PARTICLE_SIZE / 2 + + FRICTION * (PARTICLE_SIZE / 2 - p->z); + } + } +} + + +//======================================================================== +// The main frame for the particle engine. Called once per frame. +//======================================================================== + +static void particle_engine(double t, float dt) +{ + int i; + float dt2; + + // Update particles (iterated several times per frame if dt is too large) + while (dt > 0.f) + { + // Calculate delta time for this iteration + dt2 = dt < MIN_DELTA_T ? dt : MIN_DELTA_T; + + for (i = 0; i < MAX_PARTICLES; i++) + update_particle(&particles[i], dt2); + + min_age += dt2; + + // Should we create any new particle(s)? + while (min_age >= BIRTH_INTERVAL) + { + min_age -= BIRTH_INTERVAL; + + // Find a dead particle to replace with a new one + for (i = 0; i < MAX_PARTICLES; i++) + { + if (!particles[i].active) + { + init_particle(&particles[i], t + min_age); + update_particle(&particles[i], min_age); + break; + } + } + } + + dt -= dt2; + } +} + + +//======================================================================== +// Draw all active particles. We use OpenGL 1.1 vertex +// arrays for this in order to accelerate the drawing. +//======================================================================== + +#define BATCH_PARTICLES 70 // Number of particles to draw in each batch + // (70 corresponds to 7.5 KB = will not blow + // the L1 data cache on most CPUs) +#define PARTICLE_VERTS 4 // Number of vertices per particle + +static void draw_particles(GLFWwindow* window, double t, float dt) +{ + int i, particle_count; + Vertex vertex_array[BATCH_PARTICLES * PARTICLE_VERTS]; + Vertex* vptr; + float alpha; + GLuint rgba; + Vec3 quad_lower_left, quad_lower_right; + GLfloat mat[16]; + PARTICLE* pptr; + + // Here comes the real trick with flat single primitive objects (s.c. + // "billboards"): We must rotate the textured primitive so that it + // always faces the viewer (is coplanar with the view-plane). + // We: + // 1) Create the primitive around origo (0,0,0) + // 2) Rotate it so that it is coplanar with the view plane + // 3) Translate it according to the particle position + // Note that 1) and 2) is the same for all particles (done only once). + + // Get modelview matrix. We will only use the upper left 3x3 part of + // the matrix, which represents the rotation. + glGetFloatv(GL_MODELVIEW_MATRIX, mat); + + // 1) & 2) We do it in one swift step: + // Although not obvious, the following six lines represent two matrix/ + // vector multiplications. The matrix is the inverse 3x3 rotation + // matrix (i.e. the transpose of the same matrix), and the two vectors + // represent the lower left corner of the quad, PARTICLE_SIZE/2 * + // (-1,-1,0), and the lower right corner, PARTICLE_SIZE/2 * (1,-1,0). + // The upper left/right corners of the quad is always the negative of + // the opposite corners (regardless of rotation). + quad_lower_left.x = (-PARTICLE_SIZE / 2) * (mat[0] + mat[1]); + quad_lower_left.y = (-PARTICLE_SIZE / 2) * (mat[4] + mat[5]); + quad_lower_left.z = (-PARTICLE_SIZE / 2) * (mat[8] + mat[9]); + quad_lower_right.x = (PARTICLE_SIZE / 2) * (mat[0] - mat[1]); + quad_lower_right.y = (PARTICLE_SIZE / 2) * (mat[4] - mat[5]); + quad_lower_right.z = (PARTICLE_SIZE / 2) * (mat[8] - mat[9]); + + // Don't update z-buffer, since all particles are transparent! + glDepthMask(GL_FALSE); + + glEnable(GL_BLEND); + glBlendFunc(GL_SRC_ALPHA, GL_ONE); + + // Select particle texture + if (!wireframe) + { + glEnable(GL_TEXTURE_2D); + glBindTexture(GL_TEXTURE_2D, particle_tex_id); + } + + // Set up vertex arrays. We use interleaved arrays, which is easier to + // handle (in most situations) and it gives a linear memory access + // access pattern (which may give better performance in some + // situations). GL_T2F_C4UB_V3F means: 2 floats for texture coords, + // 4 ubytes for color and 3 floats for vertex coord (in that order). + // Most OpenGL cards / drivers are optimized for this format. + glInterleavedArrays(GL_T2F_C4UB_V3F, 0, vertex_array); + + // Wait for particle physics thread to be done + mtx_lock(&thread_sync.particles_lock); + while (!glfwWindowShouldClose(window) && + thread_sync.p_frame <= thread_sync.d_frame) + { + struct timespec ts; + clock_gettime(CLOCK_REALTIME, &ts); + ts.tv_nsec += 100 * 1000 * 1000; + ts.tv_sec += ts.tv_nsec / (1000 * 1000 * 1000); + ts.tv_nsec %= 1000 * 1000 * 1000; + cnd_timedwait(&thread_sync.p_done, &thread_sync.particles_lock, &ts); + } + + // Store the frame time and delta time for the physics thread + thread_sync.t = t; + thread_sync.dt = dt; + + // Update frame counter + thread_sync.d_frame++; + + // Loop through all particles and build vertex arrays. + particle_count = 0; + vptr = vertex_array; + pptr = particles; + + for (i = 0; i < MAX_PARTICLES; i++) + { + if (pptr->active) + { + // Calculate particle intensity (we set it to max during 75% + // of its life, then it fades out) + alpha = 4.f * pptr->life; + if (alpha > 1.f) + alpha = 1.f; + + // Convert color from float to 8-bit (store it in a 32-bit + // integer using endian independent type casting) + ((GLubyte*) &rgba)[0] = (GLubyte)(pptr->r * 255.f); + ((GLubyte*) &rgba)[1] = (GLubyte)(pptr->g * 255.f); + ((GLubyte*) &rgba)[2] = (GLubyte)(pptr->b * 255.f); + ((GLubyte*) &rgba)[3] = (GLubyte)(alpha * 255.f); + + // 3) Translate the quad to the correct position in modelview + // space and store its parameters in vertex arrays (we also + // store texture coord and color information for each vertex). + + // Lower left corner + vptr->s = 0.f; + vptr->t = 0.f; + vptr->rgba = rgba; + vptr->x = pptr->x + quad_lower_left.x; + vptr->y = pptr->y + quad_lower_left.y; + vptr->z = pptr->z + quad_lower_left.z; + vptr ++; + + // Lower right corner + vptr->s = 1.f; + vptr->t = 0.f; + vptr->rgba = rgba; + vptr->x = pptr->x + quad_lower_right.x; + vptr->y = pptr->y + quad_lower_right.y; + vptr->z = pptr->z + quad_lower_right.z; + vptr ++; + + // Upper right corner + vptr->s = 1.f; + vptr->t = 1.f; + vptr->rgba = rgba; + vptr->x = pptr->x - quad_lower_left.x; + vptr->y = pptr->y - quad_lower_left.y; + vptr->z = pptr->z - quad_lower_left.z; + vptr ++; + + // Upper left corner + vptr->s = 0.f; + vptr->t = 1.f; + vptr->rgba = rgba; + vptr->x = pptr->x - quad_lower_right.x; + vptr->y = pptr->y - quad_lower_right.y; + vptr->z = pptr->z - quad_lower_right.z; + vptr ++; + + // Increase count of drawable particles + particle_count ++; + } + + // If we have filled up one batch of particles, draw it as a set + // of quads using glDrawArrays. + if (particle_count >= BATCH_PARTICLES) + { + // The first argument tells which primitive type we use (QUAD) + // The second argument tells the index of the first vertex (0) + // The last argument is the vertex count + glDrawArrays(GL_QUADS, 0, PARTICLE_VERTS * particle_count); + particle_count = 0; + vptr = vertex_array; + } + + // Next particle + pptr++; + } + + // We are done with the particle data + mtx_unlock(&thread_sync.particles_lock); + cnd_signal(&thread_sync.d_done); + + // Draw final batch of particles (if any) + glDrawArrays(GL_QUADS, 0, PARTICLE_VERTS * particle_count); + + // Disable vertex arrays (Note: glInterleavedArrays implicitly called + // glEnableClientState for vertex, texture coord and color arrays) + glDisableClientState(GL_VERTEX_ARRAY); + glDisableClientState(GL_TEXTURE_COORD_ARRAY); + glDisableClientState(GL_COLOR_ARRAY); + + glDisable(GL_TEXTURE_2D); + glDisable(GL_BLEND); + + glDepthMask(GL_TRUE); +} + + +//======================================================================== +// Fountain geometry specification +//======================================================================== + +#define FOUNTAIN_SIDE_POINTS 14 +#define FOUNTAIN_SWEEP_STEPS 32 + +static const float fountain_side[FOUNTAIN_SIDE_POINTS * 2] = +{ + 1.2f, 0.f, 1.f, 0.2f, 0.41f, 0.3f, 0.4f, 0.35f, + 0.4f, 1.95f, 0.41f, 2.f, 0.8f, 2.2f, 1.2f, 2.4f, + 1.5f, 2.7f, 1.55f,2.95f, 1.6f, 3.f, 1.f, 3.f, + 0.5f, 3.f, 0.f, 3.f +}; + +static const float fountain_normal[FOUNTAIN_SIDE_POINTS * 2] = +{ + 1.0000f, 0.0000f, 0.6428f, 0.7660f, 0.3420f, 0.9397f, 1.0000f, 0.0000f, + 1.0000f, 0.0000f, 0.3420f,-0.9397f, 0.4226f,-0.9063f, 0.5000f,-0.8660f, + 0.7660f,-0.6428f, 0.9063f,-0.4226f, 0.0000f,1.00000f, 0.0000f,1.00000f, + 0.0000f,1.00000f, 0.0000f,1.00000f +}; + + +//======================================================================== +// Draw a fountain +//======================================================================== + +static void draw_fountain(void) +{ + static GLuint fountain_list = 0; + double angle; + float x, y; + int m, n; + + // The first time, we build the fountain display list + if (!fountain_list) + { + fountain_list = glGenLists(1); + glNewList(fountain_list, GL_COMPILE_AND_EXECUTE); + + glMaterialfv(GL_FRONT, GL_DIFFUSE, fountain_diffuse); + glMaterialfv(GL_FRONT, GL_SPECULAR, fountain_specular); + glMaterialf(GL_FRONT, GL_SHININESS, fountain_shininess); + + // Build fountain using triangle strips + for (n = 0; n < FOUNTAIN_SIDE_POINTS - 1; n++) + { + glBegin(GL_TRIANGLE_STRIP); + for (m = 0; m <= FOUNTAIN_SWEEP_STEPS; m++) + { + angle = (double) m * (2.0 * M_PI / (double) FOUNTAIN_SWEEP_STEPS); + x = (float) cos(angle); + y = (float) sin(angle); + + // Draw triangle strip + glNormal3f(x * fountain_normal[n * 2 + 2], + y * fountain_normal[n * 2 + 2], + fountain_normal[n * 2 + 3]); + glVertex3f(x * fountain_side[n * 2 + 2], + y * fountain_side[n * 2 + 2], + fountain_side[n * 2 +3 ]); + glNormal3f(x * fountain_normal[n * 2], + y * fountain_normal[n * 2], + fountain_normal[n * 2 + 1]); + glVertex3f(x * fountain_side[n * 2], + y * fountain_side[n * 2], + fountain_side[n * 2 + 1]); + } + + glEnd(); + } + + glEndList(); + } + else + glCallList(fountain_list); +} + + +//======================================================================== +// Recursive function for building variable tessellated floor +//======================================================================== + +static void tessellate_floor(float x1, float y1, float x2, float y2, int depth) +{ + float delta, x, y; + + // Last recursion? + if (depth >= 5) + delta = 999999.f; + else + { + x = (float) (fabs(x1) < fabs(x2) ? fabs(x1) : fabs(x2)); + y = (float) (fabs(y1) < fabs(y2) ? fabs(y1) : fabs(y2)); + delta = x*x + y*y; + } + + // Recurse further? + if (delta < 0.1f) + { + x = (x1 + x2) * 0.5f; + y = (y1 + y2) * 0.5f; + tessellate_floor(x1, y1, x, y, depth + 1); + tessellate_floor(x, y1, x2, y, depth + 1); + tessellate_floor(x1, y, x, y2, depth + 1); + tessellate_floor(x, y, x2, y2, depth + 1); + } + else + { + glTexCoord2f(x1 * 30.f, y1 * 30.f); + glVertex3f( x1 * 80.f, y1 * 80.f, 0.f); + glTexCoord2f(x2 * 30.f, y1 * 30.f); + glVertex3f( x2 * 80.f, y1 * 80.f, 0.f); + glTexCoord2f(x2 * 30.f, y2 * 30.f); + glVertex3f( x2 * 80.f, y2 * 80.f, 0.f); + glTexCoord2f(x1 * 30.f, y2 * 30.f); + glVertex3f( x1 * 80.f, y2 * 80.f, 0.f); + } +} + + +//======================================================================== +// Draw floor. We build the floor recursively and let the tessellation in the +// center (near x,y=0,0) be high, while the tessellation around the edges be +// low. +//======================================================================== + +static void draw_floor(void) +{ + static GLuint floor_list = 0; + + if (!wireframe) + { + glEnable(GL_TEXTURE_2D); + glBindTexture(GL_TEXTURE_2D, floor_tex_id); + } + + // The first time, we build the floor display list + if (!floor_list) + { + floor_list = glGenLists(1); + glNewList(floor_list, GL_COMPILE_AND_EXECUTE); + + glMaterialfv(GL_FRONT, GL_DIFFUSE, floor_diffuse); + glMaterialfv(GL_FRONT, GL_SPECULAR, floor_specular); + glMaterialf(GL_FRONT, GL_SHININESS, floor_shininess); + + // Draw floor as a bunch of triangle strips (high tessellation + // improves lighting) + glNormal3f(0.f, 0.f, 1.f); + glBegin(GL_QUADS); + tessellate_floor(-1.f, -1.f, 0.f, 0.f, 0); + tessellate_floor( 0.f, -1.f, 1.f, 0.f, 0); + tessellate_floor( 0.f, 0.f, 1.f, 1.f, 0); + tessellate_floor(-1.f, 0.f, 0.f, 1.f, 0); + glEnd(); + + glEndList(); + } + else + glCallList(floor_list); + + glDisable(GL_TEXTURE_2D); + +} + + +//======================================================================== +// Position and configure light sources +//======================================================================== + +static void setup_lights(void) +{ + float l1pos[4], l1amb[4], l1dif[4], l1spec[4]; + float l2pos[4], l2amb[4], l2dif[4], l2spec[4]; + + // Set light source 1 parameters + l1pos[0] = 0.f; l1pos[1] = -9.f; l1pos[2] = 8.f; l1pos[3] = 1.f; + l1amb[0] = 0.2f; l1amb[1] = 0.2f; l1amb[2] = 0.2f; l1amb[3] = 1.f; + l1dif[0] = 0.8f; l1dif[1] = 0.4f; l1dif[2] = 0.2f; l1dif[3] = 1.f; + l1spec[0] = 1.f; l1spec[1] = 0.6f; l1spec[2] = 0.2f; l1spec[3] = 0.f; + + // Set light source 2 parameters + l2pos[0] = -15.f; l2pos[1] = 12.f; l2pos[2] = 1.5f; l2pos[3] = 1.f; + l2amb[0] = 0.f; l2amb[1] = 0.f; l2amb[2] = 0.f; l2amb[3] = 1.f; + l2dif[0] = 0.2f; l2dif[1] = 0.4f; l2dif[2] = 0.8f; l2dif[3] = 1.f; + l2spec[0] = 0.2f; l2spec[1] = 0.6f; l2spec[2] = 1.f; l2spec[3] = 0.f; + + glLightfv(GL_LIGHT1, GL_POSITION, l1pos); + glLightfv(GL_LIGHT1, GL_AMBIENT, l1amb); + glLightfv(GL_LIGHT1, GL_DIFFUSE, l1dif); + glLightfv(GL_LIGHT1, GL_SPECULAR, l1spec); + glLightfv(GL_LIGHT2, GL_POSITION, l2pos); + glLightfv(GL_LIGHT2, GL_AMBIENT, l2amb); + glLightfv(GL_LIGHT2, GL_DIFFUSE, l2dif); + glLightfv(GL_LIGHT2, GL_SPECULAR, l2spec); + glLightfv(GL_LIGHT3, GL_POSITION, glow_pos); + glLightfv(GL_LIGHT3, GL_DIFFUSE, glow_color); + glLightfv(GL_LIGHT3, GL_SPECULAR, glow_color); + + glEnable(GL_LIGHT1); + glEnable(GL_LIGHT2); + glEnable(GL_LIGHT3); +} + + +//======================================================================== +// Main rendering function +//======================================================================== + +static void draw_scene(GLFWwindow* window, double t) +{ + double xpos, ypos, zpos, angle_x, angle_y, angle_z; + static double t_old = 0.0; + float dt; + mat4x4 projection; + + // Calculate frame-to-frame delta time + dt = (float) (t - t_old); + t_old = t; + + mat4x4_perspective(projection, + 65.f * (float) M_PI / 180.f, + aspect_ratio, + 1.0, 60.0); + + glClearColor(0.1f, 0.1f, 0.1f, 1.f); + glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); + + glMatrixMode(GL_PROJECTION); + glLoadMatrixf((const GLfloat*) projection); + + // Setup camera + glMatrixMode(GL_MODELVIEW); + glLoadIdentity(); + + // Rotate camera + angle_x = 90.0 - 10.0; + angle_y = 10.0 * sin(0.3 * t); + angle_z = 10.0 * t; + glRotated(-angle_x, 1.0, 0.0, 0.0); + glRotated(-angle_y, 0.0, 1.0, 0.0); + glRotated(-angle_z, 0.0, 0.0, 1.0); + + // Translate camera + xpos = 15.0 * sin((M_PI / 180.0) * angle_z) + + 2.0 * sin((M_PI / 180.0) * 3.1 * t); + ypos = -15.0 * cos((M_PI / 180.0) * angle_z) + + 2.0 * cos((M_PI / 180.0) * 2.9 * t); + zpos = 4.0 + 2.0 * cos((M_PI / 180.0) * 4.9 * t); + glTranslated(-xpos, -ypos, -zpos); + + glFrontFace(GL_CCW); + glCullFace(GL_BACK); + glEnable(GL_CULL_FACE); + + setup_lights(); + glEnable(GL_LIGHTING); + + glEnable(GL_FOG); + glFogi(GL_FOG_MODE, GL_EXP); + glFogf(GL_FOG_DENSITY, 0.05f); + glFogfv(GL_FOG_COLOR, fog_color); + + draw_floor(); + + glEnable(GL_DEPTH_TEST); + glDepthFunc(GL_LEQUAL); + glDepthMask(GL_TRUE); + + draw_fountain(); + + glDisable(GL_LIGHTING); + glDisable(GL_FOG); + + // Particles must be drawn after all solid objects have been drawn + draw_particles(window, t, dt); + + // Z-buffer not needed anymore + glDisable(GL_DEPTH_TEST); +} + + +//======================================================================== +// Window resize callback function +//======================================================================== + +static void resize_callback(GLFWwindow* window, int width, int height) +{ + glViewport(0, 0, width, height); + aspect_ratio = height ? width / (float) height : 1.f; +} + + +//======================================================================== +// Key callback functions +//======================================================================== + +static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods) +{ + if (action == GLFW_PRESS) + { + switch (key) + { + case GLFW_KEY_ESCAPE: + glfwSetWindowShouldClose(window, GLFW_TRUE); + break; + case GLFW_KEY_W: + wireframe = !wireframe; + glPolygonMode(GL_FRONT_AND_BACK, + wireframe ? GL_LINE : GL_FILL); + break; + default: + break; + } + } +} + + +//======================================================================== +// Thread for updating particle physics +//======================================================================== + +static int physics_thread_main(void* arg) +{ + GLFWwindow* window = arg; + + for (;;) + { + mtx_lock(&thread_sync.particles_lock); + + // Wait for particle drawing to be done + while (!glfwWindowShouldClose(window) && + thread_sync.p_frame > thread_sync.d_frame) + { + struct timespec ts; + clock_gettime(CLOCK_REALTIME, &ts); + ts.tv_nsec += 100 * 1000 * 1000; + ts.tv_sec += ts.tv_nsec / (1000 * 1000 * 1000); + ts.tv_nsec %= 1000 * 1000 * 1000; + cnd_timedwait(&thread_sync.d_done, &thread_sync.particles_lock, &ts); + } + + if (glfwWindowShouldClose(window)) + break; + + // Update particles + particle_engine(thread_sync.t, thread_sync.dt); + + // Update frame counter + thread_sync.p_frame++; + + // Unlock mutex and signal drawing thread + mtx_unlock(&thread_sync.particles_lock); + cnd_signal(&thread_sync.p_done); + } + + return 0; +} + + +//======================================================================== +// main +//======================================================================== + +int main(int argc, char** argv) +{ + int ch, width, height; + thrd_t physics_thread = 0; + GLFWwindow* window; + GLFWmonitor* monitor = NULL; + + if (!glfwInit()) + { + fprintf(stderr, "Failed to initialize GLFW\n"); + exit(EXIT_FAILURE); + } + + while ((ch = getopt(argc, argv, "fh")) != -1) + { + switch (ch) + { + case 'f': + monitor = glfwGetPrimaryMonitor(); + break; + case 'h': + usage(); + exit(EXIT_SUCCESS); + } + } + + if (monitor) + { + const GLFWvidmode* mode = glfwGetVideoMode(monitor); + + glfwWindowHint(GLFW_RED_BITS, mode->redBits); + glfwWindowHint(GLFW_GREEN_BITS, mode->greenBits); + glfwWindowHint(GLFW_BLUE_BITS, mode->blueBits); + glfwWindowHint(GLFW_REFRESH_RATE, mode->refreshRate); + + width = mode->width; + height = mode->height; + } + else + { + width = 640; + height = 480; + } + + window = glfwCreateWindow(width, height, "Particle Engine", monitor, NULL); + if (!window) + { + fprintf(stderr, "Failed to create GLFW window\n"); + glfwTerminate(); + exit(EXIT_FAILURE); + } + + if (monitor) + glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); + + glfwMakeContextCurrent(window); + gladLoadGL(glfwGetProcAddress); + glfwSwapInterval(1); + + glfwSetFramebufferSizeCallback(window, resize_callback); + glfwSetKeyCallback(window, key_callback); + + // Set initial aspect ratio + glfwGetFramebufferSize(window, &width, &height); + resize_callback(window, width, height); + + // Upload particle texture + glGenTextures(1, &particle_tex_id); + glBindTexture(GL_TEXTURE_2D, particle_tex_id); + glPixelStorei(GL_UNPACK_ALIGNMENT, 1); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, P_TEX_WIDTH, P_TEX_HEIGHT, + 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, particle_texture); + + // Upload floor texture + glGenTextures(1, &floor_tex_id); + glBindTexture(GL_TEXTURE_2D, floor_tex_id); + glPixelStorei(GL_UNPACK_ALIGNMENT, 1); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, F_TEX_WIDTH, F_TEX_HEIGHT, + 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, floor_texture); + + if (glfwExtensionSupported("GL_EXT_separate_specular_color")) + { + glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL_EXT, + GL_SEPARATE_SPECULAR_COLOR_EXT); + } + + // Set filled polygon mode as default (not wireframe) + glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); + wireframe = 0; + + // Set initial times + thread_sync.t = 0.0; + thread_sync.dt = 0.001f; + thread_sync.p_frame = 0; + thread_sync.d_frame = 0; + + mtx_init(&thread_sync.particles_lock, mtx_timed); + cnd_init(&thread_sync.p_done); + cnd_init(&thread_sync.d_done); + + if (thrd_create(&physics_thread, physics_thread_main, window) != thrd_success) + { + glfwTerminate(); + exit(EXIT_FAILURE); + } + + glfwSetTime(0.0); + + while (!glfwWindowShouldClose(window)) + { + draw_scene(window, glfwGetTime()); + + glfwSwapBuffers(window); + glfwPollEvents(); + } + + thrd_join(physics_thread, NULL); + + glfwDestroyWindow(window); + glfwTerminate(); + + exit(EXIT_SUCCESS); +} + |