summaryrefslogtreecommitdiff
path: root/src/maths
diff options
context:
space:
mode:
authoromniscient <17525998+omnisci3nce@users.noreply.github.com>2024-04-05 00:28:24 +1100
committeromniscient <17525998+omnisci3nce@users.noreply.github.com>2024-04-05 00:28:24 +1100
commite5495790aeba905505152ad3b6690f459a44df03 (patch)
tree719095667250b5163c05325452179e6779612b7d /src/maths
parent9baff5661f2ba8b57e1b0794e490e239b7ef80ca (diff)
close.
Diffstat (limited to 'src/maths')
-rw-r--r--src/maths/maths.h49
1 files changed, 49 insertions, 0 deletions
diff --git a/src/maths/maths.h b/src/maths/maths.h
index a16a6b4..76531f2 100644
--- a/src/maths/maths.h
+++ b/src/maths/maths.h
@@ -83,6 +83,55 @@ static quat quat_from_axis_angle(vec3 axis, f32 angle, bool normalize) {
return q;
}
+// TODO: grok this.
+static inline quat quat_slerp(quat a, quat b, f32 percentage) {
+ quat out_quaternion;
+
+ quat q0 = quat_normalise(a);
+ quat q1 = quat_normalise(b);
+
+ // Compute the cosine of the angle between the two vectors.
+ f32 dot = quat_dot(q0, q1);
+
+ // If the dot product is negative, slerp won't take
+ // the shorter path. Note that v1 and -v1 are equivalent when
+ // the negation is applied to all four components. Fix by
+ // reversing one quaternion.
+ if (dot < 0.0f) {
+ q1.x = -q1.x;
+ q1.y = -q1.y;
+ q1.z = -q1.z;
+ q1.w = -q1.w;
+ dot = -dot;
+ }
+
+ const f32 DOT_THRESHOLD = 0.9995f;
+ if (dot > DOT_THRESHOLD) {
+ // If the inputs are too close for comfort, linearly interpolate
+ // and normalize the result.
+ out_quaternion = (quat){q0.x + ((q1.x - q0.x) * percentage),
+ q0.y + ((q1.y - q0.y) * percentage),
+ q0.z + ((q1.z - q0.z) * percentage),
+ q0.w + ((q1.w - q0.w) * percentage)};
+
+ return quat_normalise(out_quaternion);
+ }
+
+ // Since dot is in range [0, DOT_THRESHOLD], acos is safe
+ f32 theta_0 = cos(dot); // theta_0 = angle between input vectors
+ f32 theta = theta_0 * percentage; // theta = angle between v0 and result
+ f32 sin_theta = sin(theta); // compute this value only once
+ f32 sin_theta_0 = sin(theta_0); // compute this value only once
+
+ f32 s0 =
+ cos(theta) -
+ dot * sin_theta / sin_theta_0; // == sin(theta_0 - theta) / sin(theta_0)
+ f32 s1 = sin_theta / sin_theta_0;
+
+ return (quat){(q0.x * s0) + (q1.x * s1), (q0.y * s0) + (q1.y * s1),
+ (q0.z * s0) + (q1.z * s1), (q0.w * s0) + (q1.w * s1)};
+}
+
// --- Matrix Implementations
static inline mat4 mat4_ident() {