diff options
author | omniscient <17525998+omnisci3nce@users.noreply.github.com> | 2024-04-05 00:28:24 +1100 |
---|---|---|
committer | omniscient <17525998+omnisci3nce@users.noreply.github.com> | 2024-04-05 00:28:24 +1100 |
commit | e5495790aeba905505152ad3b6690f459a44df03 (patch) | |
tree | 719095667250b5163c05325452179e6779612b7d /src/maths | |
parent | 9baff5661f2ba8b57e1b0794e490e239b7ef80ca (diff) |
close.
Diffstat (limited to 'src/maths')
-rw-r--r-- | src/maths/maths.h | 49 |
1 files changed, 49 insertions, 0 deletions
diff --git a/src/maths/maths.h b/src/maths/maths.h index a16a6b4..76531f2 100644 --- a/src/maths/maths.h +++ b/src/maths/maths.h @@ -83,6 +83,55 @@ static quat quat_from_axis_angle(vec3 axis, f32 angle, bool normalize) { return q; } +// TODO: grok this. +static inline quat quat_slerp(quat a, quat b, f32 percentage) { + quat out_quaternion; + + quat q0 = quat_normalise(a); + quat q1 = quat_normalise(b); + + // Compute the cosine of the angle between the two vectors. + f32 dot = quat_dot(q0, q1); + + // If the dot product is negative, slerp won't take + // the shorter path. Note that v1 and -v1 are equivalent when + // the negation is applied to all four components. Fix by + // reversing one quaternion. + if (dot < 0.0f) { + q1.x = -q1.x; + q1.y = -q1.y; + q1.z = -q1.z; + q1.w = -q1.w; + dot = -dot; + } + + const f32 DOT_THRESHOLD = 0.9995f; + if (dot > DOT_THRESHOLD) { + // If the inputs are too close for comfort, linearly interpolate + // and normalize the result. + out_quaternion = (quat){q0.x + ((q1.x - q0.x) * percentage), + q0.y + ((q1.y - q0.y) * percentage), + q0.z + ((q1.z - q0.z) * percentage), + q0.w + ((q1.w - q0.w) * percentage)}; + + return quat_normalise(out_quaternion); + } + + // Since dot is in range [0, DOT_THRESHOLD], acos is safe + f32 theta_0 = cos(dot); // theta_0 = angle between input vectors + f32 theta = theta_0 * percentage; // theta = angle between v0 and result + f32 sin_theta = sin(theta); // compute this value only once + f32 sin_theta_0 = sin(theta_0); // compute this value only once + + f32 s0 = + cos(theta) - + dot * sin_theta / sin_theta_0; // == sin(theta_0 - theta) / sin(theta_0) + f32 s1 = sin_theta / sin_theta_0; + + return (quat){(q0.x * s0) + (q1.x * s1), (q0.y * s0) + (q1.y * s1), + (q0.z * s0) + (q1.z * s1), (q0.w * s0) + (q1.w * s1)}; +} + // --- Matrix Implementations static inline mat4 mat4_ident() { |