1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
#include <glfw3.h>
#include "camera.h"
#include "core.h"
#include "input.h"
#include "keys.h"
#include "maths.h"
#include "maths_types.h"
#include "primitives.h"
#include "render.h"
#include "render_backend.h"
#include "render_types.h"
typedef struct game_state {
camera camera;
vec3 camera_euler;
bool first_mouse_update; // so the camera doesnt lurch when you run the first
// process_camera_rotation
} game_state;
void update_camera_rotation(input_state* input, game_state* game, camera* cam);
int main() {
core* core = core_bringup();
vec3 cam_pos = vec3_create(-15, 20.0, 13);
game_state game = {
.camera = camera_create(cam_pos, vec3_negate(cam_pos), VEC3_Y, deg_to_rad(45.0)),
.camera_euler = vec3_create(90, 0, 0),
.first_mouse_update = true,
};
// model_handle cube_handle = prim_cube_new(core);
printf("Starting look direction: ");
print_vec3(game.camera.front);
// Main loop
const f32 camera_speed = 0.4;
while (!should_exit(core)) {
input_update(&core->input);
vec3 translation = VEC3_ZERO;
if (key_is_pressed(KEYCODE_W) || key_is_pressed(KEYCODE_KEY_UP)) {
printf("Move Forwards\n");
translation = vec3_mult(game.camera.front, camera_speed);
} else if (key_is_pressed(KEYCODE_S) || key_is_pressed(KEYCODE_KEY_DOWN)) {
printf("Move Backwards\n");
translation = vec3_mult(game.camera.front, -camera_speed);
} else if (key_is_pressed(KEYCODE_A) || key_is_pressed(KEYCODE_KEY_LEFT)) {
printf("Move Left\n");
vec3 lateral = vec3_normalise(vec3_cross(game.camera.front, game.camera.up));
translation = vec3_mult(lateral, -camera_speed);
} else if (key_is_pressed(KEYCODE_D) || key_is_pressed(KEYCODE_KEY_RIGHT)) {
printf("Move Right\n");
vec3 lateral = vec3_normalise(vec3_cross(game.camera.front, game.camera.up));
translation = vec3_mult(lateral, camera_speed);
}
game.camera.position = vec3_add(game.camera.position, translation);
// update_camera_rotation(&core->input, &game, &game.camera);
// UNUSED: threadpool_process_results(&core->threadpool, 1);
render_frame_begin(&core->renderer);
// model cube = core->models->data[cube_handle.raw];
mat4 model = mat4_translation(VEC3_ZERO);
gfx_backend_draw_frame(&core->renderer, &game.camera, model);
render_frame_end(&core->renderer);
}
core_shutdown(core);
return 0;
}
void update_camera_rotation(input_state* input, game_state* game, camera* cam) {
float xoffset = -input->mouse.x_delta; // xpos - lastX;
float yoffset = -input->mouse.y_delta; // reversed since y-coordinates go from bottom to top
if (game->first_mouse_update) {
xoffset = 0.0;
yoffset = 0.0;
game->first_mouse_update = false;
}
float sensitivity = 0.1f; // change this value to your liking
xoffset *= sensitivity;
yoffset *= sensitivity;
// x = yaw
game->camera_euler.x += xoffset;
// y = pitch
game->camera_euler.y += yoffset;
// we dont update roll
f32 yaw = game->camera_euler.x;
f32 pitch = game->camera_euler.y;
// make sure that when pitch is out of bounds, screen doesn't get flipped
if (game->camera_euler.y > 89.0f) game->camera_euler.y = 89.0f;
if (game->camera_euler.y < -89.0f) game->camera_euler.y = -89.0f;
vec3 front = cam->front;
front.x = cos(deg_to_rad(yaw) * cos(deg_to_rad(pitch)));
front.y = sin(deg_to_rad(pitch));
front.z = sin(deg_to_rad(yaw)) * cos(deg_to_rad(pitch));
front = vec3_normalise(front);
// save it back
cam->front.x = front.x;
cam->front.y = front.y;
// roll is static
print_vec3(cam->front);
}
|