1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
/**
* @file maths.h
* @author your name (you@domain.com)
* @brief
* @version 0.1
* @date 2024-02-24
* @copyright Copyright (c) 2024
*/
#pragma once
#include <math.h>
#include <stdio.h>
#include "defines.h"
#include "maths_types.h"
// #undef c_static_inline
// #define c_static_inline static
// --- Helpers
#define deg_to_rad(x) (x * 3.14 / 180.0)
#define MIN(a, b) (a < b ? a : b)
#define MAX(a, b) (a > b ? a : b)
// --- Vector Implementations
// Dimension 3
PUB c_static_inline Vec3 vec3_create(f32 x, f32 y, f32 z);
#define vec3(x, y, z) ((Vec3){ x, y, z })
PUB c_static_inline Vec3 vec3_add(Vec3 a, Vec3 b);
PUB c_static_inline Vec3 vec3_sub(Vec3 a, Vec3 b);
PUB c_static_inline Vec3 vec3_mult(Vec3 a, f32 s);
PUB c_static_inline Vec3 vec3_div(Vec3 a, f32 s);
PUB c_static_inline f32 vec3_len_squared(Vec3 a);
PUB c_static_inline f32 vec3_len(Vec3 a);
PUB c_static_inline Vec3 vec3_negate(Vec3 a);
PUB c_static_inline Vec3 vec3_normalise(Vec3 a);
PUB c_static_inline f32 vec3_dot(Vec3 a, Vec3 b);
PUB c_static_inline Vec3 vec3_cross(Vec3 a, Vec3 b);
static const Vec3 VEC3_X = vec3(1.0, 0.0, 0.0);
static const Vec3 VEC3_NEG_X = vec3(-1.0, 0.0, 0.0);
static const Vec3 VEC3_Y = vec3(0.0, 1.0, 0.0);
static const Vec3 VEC3_NEG_Y = vec3(0.0, -1.0, 0.0);
static const Vec3 VEC3_Z = vec3(0.0, 0.0, 1.0);
static const Vec3 VEC3_NEG_Z = vec3(0.0, 0.0, -1.0);
static const Vec3 VEC3_ZERO = vec3(0.0, 0.0, 0.0);
static const Vec3 VEC3_ONES = vec3(1.0, 1.0, 1.0);
c_static_inline void print_vec3(Vec3 v) {
printf("{ x: %f, y: %f, z: %f )\n", (f64)v.x, (f64)v.y, (f64)v.z);
}
// TODO: Dimension 2
c_static_inline Vec2 vec2_create(f32 x, f32 y) { return (Vec2){ x, y }; }
#define vec2(x, y) ((Vec2){ x, y })
c_static_inline Vec2 vec2_div(Vec2 a, f32 s) { return (Vec2){ a.x / s, a.y / s }; }
// TODO: Dimension 4
static Vec4 vec4_create(f32 x, f32 y, f32 z, f32 w) { return (Vec4){ x, y, z, w }; }
#define vec4(x, y, z, w) (vec4_create(x, y, z, w))
#define VEC4_ZERO ((Vec4){ .x = 0.0, .y = 0.0, .z = 0.0, .w = 0.0 })
// --- Quaternion Implementations
c_static_inline f32 quat_dot(Quat a, Quat b) {
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}
c_static_inline Quat quat_normalise(Quat a) {
f32 length = sqrtf(quat_dot(a, a)); // same as len squared
return (Quat){ a.x / length, a.y / length, a.z / length, a.w / length };
}
c_static_inline Quat quat_ident() { return (Quat){ .x = 0.0, .y = 0.0, .z = 0.0, .w = 1.0 }; }
static Quat quat_from_axis_angle(Vec3 axis, f32 angle, bool normalize) {
const f32 half_angle = 0.5f * angle;
f32 s = sinf(half_angle);
f32 c = cosf(half_angle);
Quat q = (Quat){ s * axis.x, s * axis.y, s * axis.z, c };
if (normalize) {
return quat_normalise(q);
}
return q;
}
// TODO: grok this.
c_static_inline Quat quat_slerp(Quat a, Quat b, f32 percentage) {
Quat out_quaternion;
Quat q0 = quat_normalise(a);
Quat q1 = quat_normalise(b);
// Compute the cosine of the angle between the two vectors.
f32 dot = quat_dot(q0, q1);
// If the dot product is negative, slerp won't take
// the shorter path. Note that v1 and -v1 are equivalent when
// the negation is applied to all four components. Fix by
// reversing one quaternion.
if (dot < 0.0f) {
q1.x = -q1.x;
q1.y = -q1.y;
q1.z = -q1.z;
q1.w = -q1.w;
dot = -dot;
}
const f32 DOT_THRESHOLD = 0.9995f;
if (dot > DOT_THRESHOLD) {
// If the inputs are too close for comfort, linearly interpolate
// and normalize the result.
out_quaternion =
(Quat){ q0.x + ((q1.x - q0.x) * percentage), q0.y + ((q1.y - q0.y) * percentage),
q0.z + ((q1.z - q0.z) * percentage), q0.w + ((q1.w - q0.w) * percentage) };
return quat_normalise(out_quaternion);
}
// TODO: Are there math functions that take floats instead of doubles?
// Since dot is in range [0, DOT_THRESHOLD], acos is safe
f64 theta_0 = cos((f64)dot); // theta_0 = angle between input vectors
f64 theta = theta_0 * (f64)percentage; // theta = angle between v0 and result
f64 sin_theta = sin((f64)theta); // compute this value only once
f64 sin_theta_0 = sin((f64)theta_0); // compute this value only once
f32 s0 =
cos(theta) - (f64)dot * sin_theta / sin_theta_0; // == sin(theta_0 - theta) / sin(theta_0)
f32 s1 = sin_theta / sin_theta_0;
return (Quat){ (q0.x * s0) + (q1.x * s1), (q0.y * s0) + (q1.y * s1), (q0.z * s0) + (q1.z * s1),
(q0.w * s0) + (q1.w * s1) };
}
// --- Matrix Implementations
Mat4 mat4_ident();
static Mat4 mat4_translation(Vec3 position) {
Mat4 out_matrix = mat4_ident();
out_matrix.data[12] = position.x;
out_matrix.data[13] = position.y;
out_matrix.data[14] = position.z;
return out_matrix;
}
static Mat4 mat4_scale(f32 scale) {
Mat4 out_matrix = mat4_ident();
out_matrix.data[0] = scale;
out_matrix.data[5] = scale;
out_matrix.data[10] = scale;
return out_matrix;
}
// TODO: double check this
c_static_inline Mat4 mat4_rotation(Quat rotation) {
Mat4 out_matrix = mat4_ident();
Quat n = quat_normalise(rotation);
out_matrix.data[0] = 1.0f - 2.0f * n.y * n.y - 2.0f * n.z * n.z;
out_matrix.data[1] = 2.0f * n.x * n.y - 2.0f * n.z * n.w;
out_matrix.data[2] = 2.0f * n.x * n.z + 2.0f * n.y * n.w;
out_matrix.data[4] = 2.0f * n.x * n.y + 2.0f * n.z * n.w;
out_matrix.data[5] = 1.0f - 2.0f * n.x * n.x - 2.0f * n.z * n.z;
out_matrix.data[6] = 2.0f * n.y * n.z - 2.0f * n.x * n.w;
out_matrix.data[8] = 2.0f * n.x * n.z - 2.0f * n.y * n.w;
out_matrix.data[9] = 2.0f * n.y * n.z + 2.0f * n.x * n.w;
out_matrix.data[10] = 1.0f - 2.0f * n.x * n.x - 2.0f * n.y * n.y;
return out_matrix;
}
static Mat4 mat4_mult(Mat4 lhs, Mat4 rhs) {
Mat4 out_matrix = mat4_ident();
const f32 *m1_ptr = lhs.data;
const f32 *m2_ptr = rhs.data;
f32 *dst_ptr = out_matrix.data;
for (i32 i = 0; i < 4; ++i) {
for (i32 j = 0; j < 4; ++j) {
*dst_ptr = m1_ptr[0] * m2_ptr[0 + j] + m1_ptr[1] * m2_ptr[4 + j] + m1_ptr[2] * m2_ptr[8 + j] +
m1_ptr[3] * m2_ptr[12 + j];
dst_ptr++;
}
m1_ptr += 4;
}
return out_matrix;
}
static Mat4 mat4_transposed(Mat4 matrix) {
Mat4 out_matrix = mat4_ident();
out_matrix.data[0] = matrix.data[0];
out_matrix.data[1] = matrix.data[4];
out_matrix.data[2] = matrix.data[8];
out_matrix.data[3] = matrix.data[12];
out_matrix.data[4] = matrix.data[1];
out_matrix.data[5] = matrix.data[5];
out_matrix.data[6] = matrix.data[9];
out_matrix.data[7] = matrix.data[13];
out_matrix.data[8] = matrix.data[2];
out_matrix.data[9] = matrix.data[6];
out_matrix.data[10] = matrix.data[10];
out_matrix.data[11] = matrix.data[14];
out_matrix.data[12] = matrix.data[3];
out_matrix.data[13] = matrix.data[7];
out_matrix.data[14] = matrix.data[11];
out_matrix.data[15] = matrix.data[15];
return out_matrix;
}
#if defined(CEL_REND_BACKEND_VULKAN)
/** @brief Creates a perspective projection matrix compatible with Vulkan */
c_static_inline Mat4 mat4_perspective(f32 fov_radians, f32 aspect_ratio, f32 near_clip,
f32 far_clip) {
f32 half_tan_fov = tanf(fov_radians * 0.5f);
Mat4 out_matrix = { .data = { 0 } };
out_matrix.data[0] = 1.0f / (aspect_ratio * half_tan_fov);
out_matrix.data[5] = -1.0f / half_tan_fov; // Flip Y-axis for Vulkan
out_matrix.data[10] = -((far_clip + near_clip) / (far_clip - near_clip));
out_matrix.data[11] = -1.0f;
out_matrix.data[14] = -((2.0f * far_clip * near_clip) / (far_clip - near_clip));
return out_matrix;
}
#else
/** @brief Creates a perspective projection matrix */
static inline Mat4 mat4_perspective(f32 fov_radians, f32 aspect_ratio, f32 near_clip,
f32 far_clip) {
f32 half_tan_fov = tanf(fov_radians * 0.5f);
Mat4 out_matrix = { .data = { 0 } };
out_matrix.data[0] = 1.0f / (aspect_ratio * half_tan_fov);
out_matrix.data[5] = 1.0f / half_tan_fov;
out_matrix.data[10] = -((far_clip + near_clip) / (far_clip - near_clip));
out_matrix.data[11] = -1.0f;
out_matrix.data[14] = -((2.0f * far_clip * near_clip) / (far_clip - near_clip));
return out_matrix;
}
#endif
/** @brief Creates an orthographic projection matrix */
static inline Mat4 mat4_orthographic(f32 left, f32 right, f32 bottom, f32 top, f32 near_clip,
f32 far_clip) {
// source: kohi game engine.
Mat4 out_matrix = mat4_ident();
f32 lr = 1.0f / (left - right);
f32 bt = 1.0f / (bottom - top);
f32 nf = 1.0f / (near_clip - far_clip);
out_matrix.data[0] = -2.0f * lr;
out_matrix.data[5] = -2.0f * bt;
out_matrix.data[10] = 2.0f * nf;
out_matrix.data[12] = (left + right) * lr;
out_matrix.data[13] = (top + bottom) * bt;
out_matrix.data[14] = (far_clip + near_clip) * nf;
return out_matrix;
}
static inline Mat4 mat4_look_at(Vec3 position, Vec3 target, Vec3 up) {
Mat4 out_matrix;
Vec3 z_axis;
z_axis.x = target.x - position.x;
z_axis.y = target.y - position.y;
z_axis.z = target.z - position.z;
z_axis = vec3_normalise(z_axis);
Vec3 x_axis = vec3_normalise(vec3_cross(z_axis, up));
Vec3 y_axis = vec3_cross(x_axis, z_axis);
out_matrix.data[0] = x_axis.x;
out_matrix.data[1] = y_axis.x;
out_matrix.data[2] = -z_axis.x;
out_matrix.data[3] = 0;
out_matrix.data[4] = x_axis.y;
out_matrix.data[5] = y_axis.y;
out_matrix.data[6] = -z_axis.y;
out_matrix.data[7] = 0;
out_matrix.data[8] = x_axis.z;
out_matrix.data[9] = y_axis.z;
out_matrix.data[10] = -z_axis.z;
out_matrix.data[11] = 0;
out_matrix.data[12] = -vec3_dot(x_axis, position);
out_matrix.data[13] = -vec3_dot(y_axis, position);
out_matrix.data[14] = vec3_dot(z_axis, position);
out_matrix.data[15] = 1.0f;
return out_matrix;
}
// ...
// --- Transform Implementations
#define TRANSFORM_DEFAULT \
((Transform){ .position = VEC3_ZERO, \
.rotation = (Quat){ .x = 0., .y = 0., .z = 0., .w = 1. }, \
.scale = 1.0, \
.is_dirty = false })
static Transform transform_create(Vec3 pos, Quat rot, f32 scale) {
return (Transform){ .position = pos, .rotation = rot, .scale = scale, .is_dirty = true };
}
c_static_inline Mat4 transform_to_mat(Transform *tf) {
Mat4 scale = mat4_scale(tf->scale);
Mat4 rotation = mat4_rotation(tf->rotation);
Mat4 translation = mat4_translation(tf->position);
return mat4_mult(translation, mat4_mult(rotation, scale));
// return mat4_mult(mat4_mult(scale, rotation), translation);
}
// --- Sizing asserts
_Static_assert(alignof(Vec3) == 4, "Vec3 is 4 byte aligned");
_Static_assert(sizeof(Vec3) == 12, "Vec3 is 12 bytes so has no padding");
_Static_assert(alignof(Vec4) == 4, "Vec4 is 4 byte aligned");
|