1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
#include "primitives.h"
#include "colours.h"
#include "log.h"
#include "maths.h"
#include "ral_types.h"
#include "render_types.h"
// --- Helpers
void push_triangle(u32_darray* arr, u32 i0, u32 i1, u32 i2) {
u32_darray_push(arr, i0);
u32_darray_push(arr, i1);
u32_darray_push(arr, i2);
}
Vec3 plane_vertex_positions[] = {
(Vec3){ -0.5, 0, -0.5 },
(Vec3){ 0.5, 0, -0.5 },
(Vec3){ -0.5, 0, 0.5 },
(Vec3){ 0.5, 0, 0.5 },
};
Geometry Geo_CreatePlane(f32x2 extents, u32 tiling_u, u32 tiling_v) {
CASSERT(tiling_u >= 1 && tiling_v >= 1);
Vertex_darray* vertices = Vertex_darray_new(4);
u32_darray* indices = u32_darray_new(vertices->len);
Vec3 vert_pos[4];
memcpy(&vert_pos, plane_vertex_positions, sizeof(plane_vertex_positions));
for (int i = 0; i < 4; i++) {
vert_pos[i].x *= extents.x;
vert_pos[i].z *= extents.y;
}
VERT_3D(vertices, vert_pos[0], VEC3_Y, vec2(0, 0)); // back left
VERT_3D(vertices, vert_pos[1], VEC3_Y, vec2(1 * tiling_u, 0 * tiling_v)); // back right
VERT_3D(vertices, vert_pos[2], VEC3_Y, vec2(0, 1 * tiling_v)); // front left
VERT_3D(vertices, vert_pos[3], VEC3_Y, vec2(1 * tiling_u, 1 * tiling_v)); // front right
// push_triangle(indices, 0, 1, 2);
// push_triangle(indices, 2, 1, 3);
push_triangle(indices, 2, 1, 0);
push_triangle(indices, 1,2,3);
for (int i = 0; i < 4; i++) {
printf("Vertex %d: (%f, %f, %f)\n", i, vert_pos[i].x, vert_pos[i].y, vert_pos[i].z);
}
Geometry geo = { .format = VERTEX_STATIC_3D,
.vertices = vertices,
.has_indices = true,
.index_count = indices->len,
.indices = indices };
return geo;
}
Geometry Geo_CreateCuboid(f32x3 extents) {
Vertex_darray* vertices = Vertex_darray_new(36);
// back faces
VERT_3D(vertices, BACK_TOP_RIGHT, VEC3_NEG_Z, vec2(1, 0));
VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_Z, vec2(0, 1));
VERT_3D(vertices, BACK_TOP_LEFT, VEC3_NEG_Z, vec2(0, 0));
VERT_3D(vertices, BACK_TOP_RIGHT, VEC3_NEG_Z, vec2(1, 0));
VERT_3D(vertices, BACK_BOT_RIGHT, VEC3_NEG_Z, vec2(1, 1));
VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_Z, vec2(0, 1));
// front faces
VERT_3D(vertices, FRONT_BOT_LEFT, VEC3_Z, vec2(0, 1));
VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_Z, vec2(1, 0));
VERT_3D(vertices, FRONT_TOP_LEFT, VEC3_Z, vec2(0, 0));
VERT_3D(vertices, FRONT_BOT_LEFT, VEC3_Z, vec2(0, 1));
VERT_3D(vertices, FRONT_BOT_RIGHT, VEC3_Z, vec2(1, 1));
VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_Z, vec2(1, 0));
// top faces
VERT_3D(vertices, BACK_TOP_LEFT, VEC3_Y, vec2(0, 0));
VERT_3D(vertices, FRONT_TOP_LEFT, VEC3_Y, vec2(0, 1));
VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_Y, vec2(1, 1));
VERT_3D(vertices, BACK_TOP_LEFT, VEC3_Y, vec2(0, 0));
VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_Y, vec2(1, 1));
VERT_3D(vertices, BACK_TOP_RIGHT, VEC3_Y, vec2(1, 0));
// bottom faces
VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_Y, vec2(0, 1));
VERT_3D(vertices, FRONT_BOT_RIGHT, VEC3_NEG_Y, vec2(1, 1));
VERT_3D(vertices, FRONT_BOT_LEFT, VEC3_NEG_Y, vec2(0, 1));
VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_Y, vec2(0, 1));
VERT_3D(vertices, BACK_BOT_RIGHT, VEC3_NEG_Y, vec2(1, 1));
VERT_3D(vertices, FRONT_BOT_RIGHT, VEC3_NEG_Y, vec2(0, 1));
// right faces
VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_X, vec2(0, 0));
VERT_3D(vertices, BACK_BOT_RIGHT, VEC3_X, vec2(1, 1));
VERT_3D(vertices, BACK_TOP_RIGHT, VEC3_X, vec2(1, 0));
VERT_3D(vertices, BACK_BOT_RIGHT, VEC3_X, vec2(1, 1));
VERT_3D(vertices, FRONT_TOP_RIGHT, VEC3_X, vec2(0, 0));
VERT_3D(vertices, FRONT_BOT_RIGHT, VEC3_X, vec2(0, 1));
// left faces
VERT_3D(vertices, FRONT_TOP_LEFT, VEC3_NEG_X, vec2(0, 0));
VERT_3D(vertices, BACK_TOP_LEFT, VEC3_NEG_X, vec2(0, 0));
VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_X, vec2(0, 0));
VERT_3D(vertices, BACK_BOT_LEFT, VEC3_NEG_X, vec2(0, 0));
VERT_3D(vertices, FRONT_BOT_LEFT, VEC3_NEG_X, vec2(0, 0));
VERT_3D(vertices, FRONT_TOP_LEFT, VEC3_NEG_X, vec2(0, 0));
u32_darray* indices = u32_darray_new(vertices->len);
for (u32 i = 0; i < vertices->len; i++) {
u32_darray_push(indices, i);
vertices->data[i].static_3d.position =
vec3_sub(vertices->data[i].static_3d.position,
vec3(0.5, 0.5, 0.5)); // make center of the cube is the origin of mesh space
}
Geometry geo = {
.format = VERTEX_STATIC_3D,
.vertices = vertices,
.has_indices = true,
.index_count = indices->len,
.indices = indices, // FIXME: make darray methods that return stack allocated struct
};
return geo;
}
// --- Spheres
Vec3 spherical_to_cartesian_coords(f32 rho, f32 theta, f32 phi) {
f32 x = rho * sin(phi) * cos(theta);
f32 y = rho * cos(phi);
f32 z = rho * sin(phi) * sin(theta);
return vec3(x, y, z);
}
Geometry Geo_CreateUVsphere(f32 radius, u32 north_south_lines, u32 east_west_lines) {
assert(east_west_lines >= 3); // sphere will be degenerate and look gacked without at least 3
assert(north_south_lines >= 3);
Vertex_darray* vertices = Vertex_darray_new(2 + (east_west_lines - 1) * north_south_lines);
// Create a UV sphere with spherical coordinates
// a point P on the unit sphere can be represented P(r, theta, phi)
// for each vertex we must convert that to a cartesian R3 coordinate
// Top point
Vertex top = { .static_3d = { .position = vec3(0, radius, 0),
.normal = vec3_normalise(vec3(0, radius, 0)),
.tex_coords = vec2(0, 0) } };
Vertex_darray_push(vertices, top);
// parallels
for (u32 i = 0; i < (east_west_lines - 1); i++) {
// phi should range from 0 to pi
f32 phi = PI * (((f32)i + 1) / (f32)east_west_lines);
// meridians
for (u32 j = 0; j < east_west_lines; j++) {
// theta should range from 0 to 2PI
f32 theta = TAU * ((f32)j / (f32)north_south_lines);
Vec3 position = spherical_to_cartesian_coords(radius, theta, phi);
// f32 d = vec3_len(position);
// print_vec3(position);
// printf("Phi %f Theta %f d %d\n", phi, theta, d);
// assert(d == radius); // all points on the sphere should be 'radius' away from the origin
Vertex v = { .static_3d = {
.position = position,
.normal =
vec3_normalise(position), // normal vector on sphere is same as position
.tex_coords = vec2(0, 0) // TODO
} };
Vertex_darray_push(vertices, v);
}
}
// Bottom point
Vertex bot = { .static_3d = { .position = vec3(0, -radius, 0),
.normal = vec3_normalise(vec3(0, -radius, 0)),
.tex_coords = vec2(0, 0) } };
Vertex_darray_push(vertices, bot);
u32_darray* indices = u32_darray_new(1);
// top bottom rings
for (u32 i = 0; i < north_south_lines; i++) {
u32 i1 = i + 1;
u32 i2 = (i + 1) % north_south_lines + 1;
push_triangle(indices, 0, i2, i1);
/* TRACE("Push triangle (%.2f %.2f %.2f)->(%.2f %.2f %.2f)->(%.2f %.2f %.2f)\n", */
/* vertices->data[0].static_3d.position.x, vertices->data[0].static_3d.position.y, */
/* vertices->data[0].static_3d.position.z, vertices->data[i1].static_3d.position.x, */
/* vertices->data[i1].static_3d.position.y, vertices->data[i1].static_3d.position.z, */
/* vertices->data[i2].static_3d.position.x, vertices->data[i2].static_3d.position.y, */
/* vertices->data[i2].static_3d.position.z); */
u32 bot = vertices->len - 1;
u32 i3 = i + north_south_lines * (east_west_lines - 2) + 1;
u32 i4 = (i + 1) % north_south_lines + north_south_lines * (east_west_lines - 2) + 1;
push_triangle(indices, bot, i3, i4);
}
// quads
for (u32 i = 0; i < east_west_lines - 2; i++) {
u32 ring_start = i * north_south_lines + 1;
u32 next_ring_start = (i + 1) * north_south_lines + 1;
/* printf("ring start %d next ring start %d\n", ring_start, next_ring_start); */
/* print_vec3(vertices->data[ring_start].static_3d.position); */
/* print_vec3(vertices->data[next_ring_start].static_3d.position); */
for (u32 j = 0; j < north_south_lines; j++) {
u32 i0 = ring_start + j;
u32 i1 = next_ring_start + j;
u32 i2 = ring_start + (j + 1) % north_south_lines;
u32 i3 = next_ring_start + (j + 1) % north_south_lines;
push_triangle(indices, i0, i2, i1);
/* TRACE("Push triangle (%.2f %.2f %.2f)->(%.2f %.2f %.2f)->(%.2f %.2f %.2f)\n", */
/* vertices->data[i0].static_3d.position.x, vertices->data[i0].static_3d.position.y, */
/* vertices->data[i0].static_3d.position.z, vertices->data[i1].static_3d.position.x, */
/* vertices->data[i1].static_3d.position.y, vertices->data[i1].static_3d.position.z, */
/* vertices->data[i2].static_3d.position.x, vertices->data[i2].static_3d.position.y, */
/* vertices->data[i2].static_3d.position.z); */
push_triangle(indices, i1, i2, i3);
}
}
Geometry geo = {
.format = VERTEX_STATIC_3D,
.vertices = vertices,
.has_indices = true,
.index_count = indices->len,
.indices = indices,
};
return geo;
}
|