1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
#include <glfw3.h>
#include "maths_types.h"
#include "render_types.h"
#define STB_IMAGE_IMPLEMENTATION
#include <stb_image.h>
#include "camera.h"
#include "file.h"
#include "log.h"
#include "mem.h"
#include "ral.h"
#include "ral_types.h"
#include "render.h"
//---NEW
#include "static_pipeline.h"
//---END
/** @brief Creates the pipelines built into Celeritas such as rendering static opaque geometry,
debug visualisations, immediate mode UI, etc */
void default_pipelines_init(renderer* ren);
bool renderer_init(renderer* ren) {
// INFO("Renderer init");
// NOTE: all platforms use GLFW at the moment but thats subject to change
glfwInit();
#if defined(CEL_REND_BACKEND_OPENGL)
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 1);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#elif defined(CEL_REND_BACKEND_VULKAN)
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
#endif
// glfw window creation
GLFWwindow* window = glfwCreateWindow(ren->config.scr_width, ren->config.scr_height,
ren->config.window_name, NULL, NULL);
if (window == NULL) {
// ERROR("Failed to create GLFW window\n");
glfwTerminate();
return false;
}
ren->window = window;
glfwMakeContextCurrent(ren->window);
DEBUG("Set up GLFW window callbacks");
DEBUG("Start gpu backend init");
if (!gpu_backend_init("Celeritas Engine - Vulkan", window)) {
FATAL("Couldnt load graphics api backend");
return false;
}
gpu_device_create(&ren->device); // TODO: handle errors
gpu_swapchain_create(&ren->swapchain);
DEBUG("Initialise GPU resource pools");
arena pool_arena = arena_create(malloc(1024 * 1024), 1024 * 1024);
ren->resource_pools = arena_alloc(&pool_arena, sizeof(struct resource_pools));
resource_pools_init(&pool_arena, ren->resource_pools);
// Create default rendering pipeline
default_pipelines_init(ren);
return true;
}
void renderer_shutdown(renderer* ren) {
gpu_swapchain_destroy(&ren->swapchain);
gpu_pipeline_destroy(&ren->static_opaque_pipeline);
gpu_backend_shutdown();
}
void default_pipelines_init(renderer* ren) {
// Static opaque geometry
arena scratch = arena_create(malloc(1024 * 1024), 1024 * 1024);
gpu_renderpass_desc pass_description = {};
gpu_renderpass* renderpass = gpu_renderpass_create(&pass_description);
ren->default_renderpass = *renderpass;
printf("Load shaders\n");
str8 vert_path, frag_path;
#ifdef CEL_REND_BACKEND_OPENGL
vert_path = str8lit("assets/shaders/cube.vert");
frag_path = str8lit("assets/shaders/cube.frag");
#else
vert_path = str8lit("build/linux/x86_64/debug/cube.vert.spv");
frag_path = str8lit("build/linux/x86_64/debug/cube.frag.spv");
#endif
str8_opt vertex_shader = str8_from_file(&scratch, vert_path);
str8_opt fragment_shader = str8_from_file(&scratch, frag_path);
if (!vertex_shader.has_value || !fragment_shader.has_value) {
ERROR_EXIT("Failed to load shaders from disk")
}
if (!vertex_shader.has_value || !fragment_shader.has_value) {
ERROR_EXIT("Failed to load shaders from disk")
}
// Vertex attributes
vertex_description vertex_input = { 0 };
vertex_input.debug_label = "Standard Static 3D Vertex Format";
vertex_desc_add(&vertex_input, "inPosition", ATTR_F32x3);
vertex_desc_add(&vertex_input, "inNormal", ATTR_F32x3);
vertex_desc_add(&vertex_input, "inTexCoords", ATTR_F32x2);
vertex_input.use_full_vertex_size = true;
// Shader data bindings
shader_data mvp_uniforms_data = { .data = NULL, .shader_data_get_layout = &mvp_uniforms_layout };
struct graphics_pipeline_desc pipeline_description = {
.debug_name = "Basic Pipeline",
.vertex_desc = vertex_input,
.data_layouts = { mvp_uniforms_data },
.data_layouts_count = 1,
.vs = { .debug_name = "Basic Vertex Shader",
.filepath = vert_path,
.code = vertex_shader.contents,
.is_spirv = true },
.fs = { .debug_name = "Basic Fragment Shader",
.filepath = frag_path,
.code = fragment_shader.contents,
.is_spirv = true },
.renderpass = renderpass,
.wireframe = false,
.depth_test = false
};
gpu_pipeline* gfx_pipeline = gpu_graphics_pipeline_create(pipeline_description);
ren->static_opaque_pipeline = *gfx_pipeline;
}
void render_frame_begin(renderer* ren) {
ren->frame_aborted = false;
if (!gpu_backend_begin_frame()) {
ren->frame_aborted = true;
WARN("Frame aborted");
return;
}
gpu_cmd_encoder* enc = gpu_get_default_cmd_encoder();
// begin recording
gpu_cmd_encoder_begin(*enc);
gpu_cmd_encoder_begin_render(enc, &ren->default_renderpass);
encode_bind_pipeline(enc, PIPELINE_GRAPHICS, &ren->static_opaque_pipeline);
encode_set_default_settings(enc);
}
void render_frame_end(renderer* ren) {
if (ren->frame_aborted) {
return;
}
gpu_cmd_encoder* enc = gpu_get_default_cmd_encoder();
gpu_cmd_encoder_end_render(enc);
gpu_cmd_buffer buf = gpu_cmd_encoder_finish(enc);
gpu_queue_submit(&buf);
gpu_backend_end_frame();
}
void render_frame_draw(renderer* ren) {}
bool mesh_has_indices(mesh* m) { return m->geometry->has_indices; }
/**
*
* @param Camera used for getting the view projection matric to draw the mesh with.
* If NULL use the last used camera */
void draw_mesh(mesh* mesh, mat4* model, camera* cam) { // , mat4* view, mat4* proj) {
gpu_cmd_encoder* enc = gpu_get_default_cmd_encoder();
encode_set_vertex_buffer(enc, mesh->vertex_buffer);
if (mesh_has_indices(mesh)) {
encode_set_index_buffer(enc, mesh->index_buffer);
}
mat4 view, proj;
if (cam) {
camera_view_projection(cam, // FIXME: proper swapchain dimensions
1000, 1000, &view, &proj);
} else {
WARN("No camera set");
}
mvp_uniforms mvp_data = { .model = *model, .view = view, .projection = proj };
my_shader_bind_group shader_bind_data = { .mvp = mvp_data };
shader_data mvp_uniforms_data = { .data = &shader_bind_data,
.shader_data_get_layout = &mvp_uniforms_layout };
encode_bind_shader_data(enc, 0, &mvp_uniforms_data);
encode_draw_indexed(enc, mesh->geometry->indices->len);
}
void gfx_backend_draw_frame(renderer* ren, camera* camera, mat4 model, texture* tex) {}
void geo_set_vertex_colours(geometry_data* geo, vec4 colour) {}
// --- NEW
mesh mesh_create(geometry_data* geometry, bool free_on_upload) {
mesh m = { 0 };
// Create and upload vertex buffer
size_t vert_bytes = geometry->vertices->len * sizeof(vertex);
INFO("Creating vertex buffer with size %d (%d x %d)", vert_bytes, geometry->vertices->len,
sizeof(vertex));
m.vertex_buffer = gpu_buffer_create(vert_bytes, CEL_BUFFER_VERTEX, CEL_BUFFER_FLAG_GPU,
geometry->vertices->data);
// Create and upload index buffer
size_t index_bytes = geometry->indices->len * sizeof(u32);
INFO("Creating index buffer with size %d (len: %d)", index_bytes, geometry->indices->len);
m.index_buffer = gpu_buffer_create(index_bytes, CEL_BUFFER_INDEX, CEL_BUFFER_FLAG_GPU,
geometry->indices->data);
m.is_uploaded = true;
// m.has_indices = geometry->has_indices;
// m.index_count = geometry->indices.len;
m.geometry = geometry;
if (free_on_upload) {
geo_free_data(geometry);
}
// TODO: materials?
return m;
}
// --- Textures
texture_data texture_data_load(const char* path, bool invert_y) {
TRACE("Load texture %s", path);
// load the file data
int width, height, num_channels;
stbi_set_flip_vertically_on_load(invert_y);
#pragma GCC diagnostic ignored "-Wpointer-sign"
char* data = stbi_load(path, &width, &height, &num_channels, STBI_rgb_alpha);
if (data) {
DEBUG("loaded texture: %s", path);
} else {
WARN("failed to load texture");
}
unsigned int channel_type;
if (num_channels == 4) {
channel_type = GL_RGBA;
} else {
channel_type = GL_RGB;
}
texture_desc desc = { .extents = { width, height },
.format = CEL_TEXTURE_FORMAT_8_8_8_8_RGBA_UNORM,
.tex_type = CEL_TEXTURE_TYPE_2D };
return (texture_data){ .description = desc, .image_data = data };
}
texture_handle texture_data_upload(texture_data data, bool free_on_upload) {
texture_handle handle = gpu_texture_create(data.description, true, data.image_data);
if (free_on_upload) {
TRACE("Freed stb_image data");
stbi_image_free(data.image_data);
}
return handle;
}
/** @brief load all of the texture for a PBR material and returns an unnamed material */
material pbr_material_load(char* albedo_path, char* normal_path, bool metal_roughness_combined,
char* metallic_path, char* roughness_map, char* ao_map) {
material m = { 0 };
m.kind = MAT_PBR;
// For now we must have the required textures
assert(albedo_path);
assert(normal_path);
assert(metallic_path);
assert(metal_roughness_combined);
m.mat_data.pbr.metal_roughness_combined = metal_roughness_combined;
texture_data tex_data;
tex_data = texture_data_load(albedo_path, false);
m.mat_data.pbr.albedo_map = texture_data_upload(tex_data, true);
tex_data = texture_data_load(normal_path, false);
m.mat_data.pbr.normal_map = texture_data_upload(tex_data, true);
tex_data = texture_data_load(metallic_path, false);
m.mat_data.pbr.metallic_map = texture_data_upload(tex_data, true);
return m;
}
|