summaryrefslogtreecommitdiff
path: root/src/renderer/backends/backend_vulkan.c
blob: c145c1a40e5e472a836f4e3bfff24d125412c8ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
#include <assert.h>
#include <glfw3.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <vulkan/vk_platform.h>
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_core.h>

#include "backend_vulkan.h"
#include "buf.h"
#include "maths_types.h"
#include "mem.h"
#include "ral_types.h"
#include "str.h"
#include "vulkan_helpers.h"

#include "defines.h"
#include "file.h"
#include "log.h"
#include "ral.h"
#include "utils.h"

// TEMP
#define SCREEN_WIDTH 1000
#define SCREEN_HEIGHT 1000
#define VULKAN_QUEUES_COUNT 2
#define MAX_DESCRIPTOR_SETS 100

const char* queue_names[VULKAN_QUEUES_COUNT] = { "GRAPHICS", "TRANSFER" };

typedef struct vulkan_context {
  VkInstance instance;
  VkAllocationCallbacks* allocator;
  VkSurfaceKHR surface;
  vulkan_swapchain_support_info swapchain_support;

  arena temp_arena;
  gpu_device* device;
  gpu_swapchain* swapchain;
  u32 framebuffer_count;
  VkFramebuffer*
      swapchain_framebuffers;  // TODO: Move this data into the swapchain as its own struct

  u32 current_img_index;
  u32 current_frame;  // super important
  gpu_cmd_encoder main_cmd_bufs[MAX_FRAMES_IN_FLIGHT];
  VkSemaphore image_available_semaphores[MAX_FRAMES_IN_FLIGHT];
  VkSemaphore render_finished_semaphores[MAX_FRAMES_IN_FLIGHT];
  VkFence in_flight_fences[MAX_FRAMES_IN_FLIGHT];

  // HACK
  VkRenderPass main_renderpass;

  u32 screen_width;
  u32 screen_height;
  bool is_resizing;
  GLFWwindow* window;

  // Storage
  gpu_buffer buffers[1024];
  size_t buffer_count;

  VkDebugUtilsMessengerEXT vk_debugger;
} vulkan_context;

static vulkan_context context;

// --- Function forward declarations

/** @brief Enumerates and selects the most appropriate graphics device */
bool select_physical_device(gpu_device* out_device);

bool is_physical_device_suitable(VkPhysicalDevice device);

queue_family_indices find_queue_families(VkPhysicalDevice device);

bool create_logical_device(gpu_device* out_device);
void create_swapchain_framebuffers();
void create_sync_objects();
void create_descriptor_pools();

VkShaderModule create_shader_module(str8 spirv);

/** @brief Helper function for creating array of all extensions we want */
cstr_darray* get_all_extensions();

bool gpu_backend_init(const char* window_name, GLFWwindow* window) {
  memset(&context, 0, sizeof(vulkan_context));
  context.allocator = 0;  // TODO: use an allocator
  context.screen_width = SCREEN_WIDTH;
  context.screen_height = SCREEN_HEIGHT;
  context.window = window;
  context.current_img_index = 0;
  context.current_frame = 0;

  // Create an allocator
  size_t temp_arena_size = 1024 * 1024;
  context.temp_arena = arena_create(malloc(temp_arena_size), temp_arena_size);

  // Setup Vulkan instance
  VkApplicationInfo app_info = { VK_STRUCTURE_TYPE_APPLICATION_INFO };
  app_info.apiVersion = VK_API_VERSION_1_3;
  app_info.pApplicationName = window_name;
  app_info.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
  app_info.pEngineName = "Celeritas Engine";
  app_info.engineVersion = VK_MAKE_VERSION(1, 0, 0);

  VkInstanceCreateInfo create_info = { VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO };
  create_info.pApplicationInfo = &app_info;

  // Extensions
  cstr_darray* required_extensions = cstr_darray_new(2);
  // cstr_darray_push(required_extensions, VK_KHR_SURFACE_EXTENSION_NAME);

  uint32_t count;
  const char** extensions = glfwGetRequiredInstanceExtensions(&count);
  for (u32 i = 0; i < count; i++) {
    cstr_darray_push(required_extensions, extensions[i]);
  }

  cstr_darray_push(required_extensions, VK_EXT_DEBUG_UTILS_EXTENSION_NAME);

  DEBUG("Required extensions:");
  for (u32 i = 0; i < cstr_darray_len(required_extensions); i++) {
    DEBUG("  %s", required_extensions->data[i]);
  }

  create_info.enabledExtensionCount = cstr_darray_len(required_extensions);
  create_info.ppEnabledExtensionNames = required_extensions->data;

  // TODO: Validation layers
  create_info.enabledLayerCount = 0;
  create_info.ppEnabledLayerNames = NULL;

  INFO("Validation layers enabled");
  cstr_darray* desired_validation_layers = cstr_darray_new(1);
  cstr_darray_push(desired_validation_layers, "VK_LAYER_KHRONOS_validation");

  u32 n_available_layers = 0;
  VK_CHECK(vkEnumerateInstanceLayerProperties(&n_available_layers, 0));
  TRACE("%d available layers", n_available_layers);
  VkLayerProperties* available_layers =
      arena_alloc(&context.temp_arena, n_available_layers * sizeof(VkLayerProperties));
  VK_CHECK(vkEnumerateInstanceLayerProperties(&n_available_layers, available_layers));

  for (int i = 0; i < cstr_darray_len(desired_validation_layers); i++) {
    // look through layers to make sure we can find the ones we want
    bool found = false;
    for (int j = 0; j < n_available_layers; j++) {
      if (str8_equals(str8_cstr_view(desired_validation_layers->data[i]),
                      str8_cstr_view(available_layers[j].layerName))) {
        found = true;
        TRACE("Found layer %s", desired_validation_layers->data[i]);
        break;
      }
    }

    if (!found) {
      FATAL("Required validation is missing %s", desired_validation_layers->data[i]);
      return false;
    }
  }
  INFO("All validation layers are present");
  create_info.enabledLayerCount = cstr_darray_len(desired_validation_layers);
  create_info.ppEnabledLayerNames = desired_validation_layers->data;

  VkResult result = vkCreateInstance(&create_info, NULL, &context.instance);
  if (result != VK_SUCCESS) {
    ERROR("vkCreateInstance failed with result: %u", result);
    return false;
  }
  TRACE("Vulkan Instance created");

  DEBUG("Creating Vulkan debugger");
  u32 log_severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT |
                     VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT;
  VkDebugUtilsMessengerCreateInfoEXT debug_create_info = {
    VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT
  };
  debug_create_info.messageSeverity = log_severity;
  debug_create_info.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
                                  VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT |
                                  VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT;
  debug_create_info.pfnUserCallback = vk_debug_callback;

  PFN_vkCreateDebugUtilsMessengerEXT func =
      (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(context.instance,
                                                                "vkCreateDebugUtilsMessengerEXT");
  assert(func);
  VK_CHECK(func(context.instance, &debug_create_info, context.allocator, &context.vk_debugger));
  DEBUG("Vulkan Debugger created");

  // Surface creation
  VkSurfaceKHR surface;
  VK_CHECK(glfwCreateWindowSurface(context.instance, window, NULL, &surface));
  context.surface = surface;
  TRACE("Vulkan Surface created");

  return true;
}

void gpu_backend_shutdown() {
  gpu_swapchain_destroy(context.swapchain);

  vkDestroySurfaceKHR(context.instance, context.surface, context.allocator);
  vkDestroyInstance(context.instance, context.allocator);
  arena_free_storage(&context.temp_arena);
}

bool gpu_device_create(gpu_device* out_device) {
  // First things first store this poitner from the renderer
  context.device = out_device;

  arena_save savept = arena_savepoint(&context.temp_arena);
  // Physical device
  if (!select_physical_device(out_device)) {
    return false;
  }
  TRACE("Physical device selected");

  // Logical device & Queues
  create_logical_device(out_device);

  // Create the command pool
  VkCommandPoolCreateInfo pool_create_info = { VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO };
  pool_create_info.queueFamilyIndex = out_device->queue_family_indicies.graphics_family_index;
  pool_create_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
  vkCreateCommandPool(out_device->logical_device, &pool_create_info, context.allocator,
                      &out_device->pool);
  TRACE("Command Pool created");

  // Synchronisation objects
  create_sync_objects();
  TRACE("Synchronisation primitives created");

  arena_rewind(savept);  // Free any temp data
  return true;
}

bool gpu_swapchain_create(gpu_swapchain* out_swapchain) {
  context.swapchain = out_swapchain;

  out_swapchain->swapchain_arena = arena_create(malloc(1024), 1024);

  vulkan_device_query_swapchain_support(context.device->physical_device, context.surface,
                                        &context.swapchain_support);
  vulkan_swapchain_support_info swapchain_support = context.swapchain_support;

  // TODO: custom swapchain extents VkExtent2D swapchain_extent = { width, height };

  VkSurfaceFormatKHR image_format = choose_swapchain_format(&swapchain_support);
  out_swapchain->image_format = image_format;
  VkPresentModeKHR present_mode = VK_PRESENT_MODE_FIFO_KHR;  // guaranteed to be implemented
  out_swapchain->present_mode = present_mode;

  u32 image_count = swapchain_support.capabilities.minImageCount + 1;
  out_swapchain->image_count = image_count;

  VkSwapchainCreateInfoKHR swapchain_create_info = { VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR };
  swapchain_create_info.surface = context.surface;
  swapchain_create_info.minImageCount = image_count;
  swapchain_create_info.imageFormat = image_format.format;
  swapchain_create_info.imageColorSpace = image_format.colorSpace;
  swapchain_create_info.imageExtent = swapchain_support.capabilities.currentExtent;
  swapchain_create_info.imageArrayLayers = 1;
  swapchain_create_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
  swapchain_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
  swapchain_create_info.queueFamilyIndexCount = 0;
  swapchain_create_info.pQueueFamilyIndices = NULL;

  swapchain_create_info.preTransform = swapchain_support.capabilities.currentTransform;
  swapchain_create_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
  swapchain_create_info.presentMode = present_mode;
  swapchain_create_info.clipped = VK_TRUE;
  swapchain_create_info.oldSwapchain = VK_NULL_HANDLE;

  out_swapchain->extent = swapchain_support.capabilities.currentExtent;

  VK_CHECK(vkCreateSwapchainKHR(context.device->logical_device, &swapchain_create_info,
                                context.allocator, &out_swapchain->handle));
  TRACE("Vulkan Swapchain created");

  // Retrieve Images
  // out_swapchain->images =
  //     arena_alloc(&out_swapchain->swapchain_arena, image_count * sizeof(VkImage));
  out_swapchain->images = malloc(image_count * sizeof(VkImage));
  VK_CHECK(vkGetSwapchainImagesKHR(context.device->logical_device, out_swapchain->handle,
                                   &image_count, out_swapchain->images));

  // Create ImageViews
  // TODO: Move this to a separate function
  out_swapchain->image_views = malloc(image_count * sizeof(VkImageView));
  // arena_alloc(&out_swapchain->swapchain_arena, image_count * sizeof(VkImageView));
  for (u32 i = 0; i < image_count; i++) {
    VkImageViewCreateInfo view_create_info = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
    view_create_info.image = out_swapchain->images[i];
    view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
    view_create_info.format = image_format.format;
    view_create_info.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
    view_create_info.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
    view_create_info.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
    view_create_info.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
    view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    view_create_info.subresourceRange.baseMipLevel = 0;
    view_create_info.subresourceRange.levelCount = 1;
    view_create_info.subresourceRange.baseArrayLayer = 0;
    view_create_info.subresourceRange.layerCount = 1;
    vkCreateImageView(context.device->logical_device, &view_create_info, context.allocator,
                      &out_swapchain->image_views[i]);
  }

  return true;
}

void gpu_swapchain_destroy(gpu_swapchain* swapchain) {
  // Destroy Framebuffers
  DEBUG("Image count %d", swapchain->image_count);
  for (u32 i = 0; i < swapchain->image_count; i++) {
    DEBUG("Framebuffer handle %d", context.swapchain_framebuffers[i]);
    vkDestroyFramebuffer(context.device->logical_device, context.swapchain_framebuffers[i],
                         context.allocator);
  }
  for (u32 i = 0; i < swapchain->image_count; i++) {
    vkDestroyImageView(context.device->logical_device, swapchain->image_views[i],
                       context.allocator);
  }
  arena_free_all(&swapchain->swapchain_arena);
  vkDestroySwapchainKHR(context.device->logical_device, swapchain->handle, context.allocator);
  TRACE("Vulkan Swapchain destroyed");
}

static void recreate_swapchain(gpu_swapchain* swapchain) {
  int width = 0, height = 0;
  glfwGetFramebufferSize(context.window, &width, &height);
  while (width == 0 || height == 0) {
    glfwGetFramebufferSize(context.window, &width, &height);
    glfwWaitEvents();
  }
  DEBUG("Recreating swapchain...");
  vkDeviceWaitIdle(context.device->logical_device);

  gpu_swapchain_destroy(swapchain);
  gpu_swapchain_create(swapchain);
  create_swapchain_framebuffers();
}

gpu_pipeline* gpu_graphics_pipeline_create(struct graphics_pipeline_desc description) {
  // Allocate
  gpu_pipeline_layout* layout = malloc(sizeof(gpu_pipeline_layout));
  gpu_pipeline* pipeline = malloc(sizeof(gpu_pipeline));

  // Shaders
  printf("Vertex shader: %s\n", description.vs.filepath.buf);
  printf("Fragment shader: %s\n", description.fs.filepath.buf);
  VkShaderModule vertex_shader = create_shader_module(description.vs.code);
  VkShaderModule fragment_shader = create_shader_module(description.fs.code);

  // Vertex
  VkPipelineShaderStageCreateInfo vert_shader_stage_info = {
    VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO
  };
  vert_shader_stage_info.stage = VK_SHADER_STAGE_VERTEX_BIT;
  vert_shader_stage_info.module = vertex_shader;
  vert_shader_stage_info.pName = "main";
  // Fragment
  VkPipelineShaderStageCreateInfo frag_shader_stage_info = {
    VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO
  };
  frag_shader_stage_info.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
  frag_shader_stage_info.module = fragment_shader;
  frag_shader_stage_info.pName = "main";

  VkPipelineShaderStageCreateInfo shader_stages[2] = { vert_shader_stage_info,
                                                       frag_shader_stage_info };

  // TODO: Attributes
  VkVertexInputAttributeDescription attribute_descs[2];
  attribute_descs[0].binding = 0;
  attribute_descs[0].location = 0;
  attribute_descs[0].format = VK_FORMAT_R32G32_SFLOAT;
  attribute_descs[0].offset = offsetof(custom_vertex, pos);

  attribute_descs[1].binding = 0;
  attribute_descs[1].location = 1;
  attribute_descs[1].format = VK_FORMAT_R32G32B32_SFLOAT;
  attribute_descs[1].offset = offsetof(custom_vertex, color);

  // Vertex input
  VkVertexInputBindingDescription binding_desc;
  binding_desc.binding = 0;
  binding_desc.stride = sizeof(custom_vertex);
  binding_desc.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

  VkPipelineVertexInputStateCreateInfo vertex_input_info = {
    VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO
  };
  vertex_input_info.vertexBindingDescriptionCount = 1;
  vertex_input_info.pVertexBindingDescriptions = &binding_desc;
  vertex_input_info.vertexAttributeDescriptionCount = 2;
  vertex_input_info.pVertexAttributeDescriptions = attribute_descs;

  // Input Assembly
  VkPipelineInputAssemblyStateCreateInfo input_assembly = {
    VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO
  };
  input_assembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
  input_assembly.primitiveRestartEnable = VK_FALSE;

  // Viewport
  VkViewport viewport = { .x = 0,
                          .y = 0,
                          .width = (f32)context.swapchain->extent.width,
                          .height = (f32)context.swapchain->extent.height,
                          .minDepth = 0.0,
                          .maxDepth = 1.0 };
  VkRect2D scissor = { .offset = { .x = 0, .y = 0 }, .extent = context.swapchain->extent };
  VkPipelineViewportStateCreateInfo viewport_state = {
    VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO
  };
  viewport_state.viewportCount = 1;
  // viewport_state.pViewports = &viewport;
  viewport_state.scissorCount = 1;
  // viewport_state.pScissors = &scissor;

  // Rasterizer
  VkPipelineRasterizationStateCreateInfo rasterizer_create_info = {
    VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO
  };
  rasterizer_create_info.depthClampEnable = VK_FALSE;
  rasterizer_create_info.rasterizerDiscardEnable = VK_FALSE;
  rasterizer_create_info.polygonMode =
      description.wireframe ? VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL;
  rasterizer_create_info.lineWidth = 1.0f;
  rasterizer_create_info.cullMode = VK_CULL_MODE_BACK_BIT;
  rasterizer_create_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
  rasterizer_create_info.depthBiasEnable = VK_FALSE;
  rasterizer_create_info.depthBiasConstantFactor = 0.0;
  rasterizer_create_info.depthBiasClamp = 0.0;
  rasterizer_create_info.depthBiasSlopeFactor = 0.0;

  // Multisampling
  VkPipelineMultisampleStateCreateInfo ms_create_info = {
    VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO
  };
  ms_create_info.sampleShadingEnable = VK_FALSE;
  ms_create_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
  ms_create_info.minSampleShading = 1.0;
  ms_create_info.pSampleMask = 0;
  ms_create_info.alphaToCoverageEnable = VK_FALSE;
  ms_create_info.alphaToOneEnable = VK_FALSE;

  // TODO: Depth and stencil testing
  // VkPipelineDepthStencilStateCreateInfo depth_stencil = {
  //   VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO
  // };
  // depth_stencil.depthTestEnable = description.depth_test ? VK_TRUE : VK_FALSE;
  // depth_stencil.depthWriteEnable = description.depth_test ? VK_TRUE : VK_FALSE;
  // depth_stencil.depthCompareOp = VK_COMPARE_OP_LESS;
  // depth_stencil.depthBoundsTestEnable = VK_FALSE;
  // depth_stencil.stencilTestEnable = VK_FALSE;
  // depth_stencil.pNext = 0;

  // Blending
  VkPipelineColorBlendAttachmentState color_blend_attachment_state;
  color_blend_attachment_state.blendEnable = VK_FALSE;
  color_blend_attachment_state.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
  color_blend_attachment_state.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
  color_blend_attachment_state.colorBlendOp = VK_BLEND_OP_ADD;
  color_blend_attachment_state.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
  color_blend_attachment_state.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
  color_blend_attachment_state.alphaBlendOp = VK_BLEND_OP_ADD;
  color_blend_attachment_state.colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
                                                VK_COLOR_COMPONENT_G_BIT |
                                                VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;

  VkPipelineColorBlendStateCreateInfo color_blend = {
    VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO
  };
  color_blend.logicOpEnable = VK_FALSE;
  color_blend.logicOp = VK_LOGIC_OP_COPY;
  color_blend.attachmentCount = 1;
  color_blend.pAttachments = &color_blend_attachment_state;

// Dynamic state
#define DYNAMIC_STATE_COUNT 2
  VkDynamicState dynamic_states[DYNAMIC_STATE_COUNT] = {
    VK_DYNAMIC_STATE_VIEWPORT,
    VK_DYNAMIC_STATE_SCISSOR,
  };

  VkPipelineDynamicStateCreateInfo dynamic_state = {
    VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO
  };
  dynamic_state.dynamicStateCount = DYNAMIC_STATE_COUNT;
  dynamic_state.pDynamicStates = dynamic_states;

  // Descriptor Set layouts

  VkDescriptorSetLayout* desc_set_layouts =
      malloc(description.data_layouts_count * sizeof(VkDescriptorSetLayout));
  pipeline->desc_set_layouts = desc_set_layouts;
  pipeline->desc_set_layouts_count = description.data_layouts_count;
  pipeline->uniform_pointers =
      malloc(description.data_layouts_count * sizeof(desc_set_uniform_buffer));

  for (u32 i = 0; i < description.data_layouts_count; i++) {
    shader_data_layout sdl = description.data_layouts[i].shader_data_get_layout(NULL);

    // NOTE: is using VLA generally ok?
    VkDescriptorSetLayoutBinding desc_set_bindings[description.data_layouts_count];

    // Bindings
    for (u32 j = 0; j < sdl.bindings_count; j++) {
      desc_set_bindings[j].binding = j;
      desc_set_bindings[j].descriptorCount = 1;
      switch (sdl.bindings[j].type) {
        case SHADER_BINDING_BUFFER:
        case SHADER_BINDING_BYTES:
          desc_set_bindings[j].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;

          u64 buffer_size = sdl.bindings[j].data.bytes.size;
          VkDeviceSize uniform_buf_size = buffer_size;
          // TODO: Create backing buffer

          VkBuffer buffers[MAX_FRAMES_IN_FLIGHT];
          VkDeviceMemory uniform_buf_memorys[MAX_FRAMES_IN_FLIGHT];
          void* uniform_buf_mem_mappings[MAX_FRAMES_IN_FLIGHT];
          // void* s?
          for (size_t frame_i = 0; frame_i < MAX_FRAMES_IN_FLIGHT; frame_i++) {
            buffer_handle uniform_buf_handle =
                gpu_buffer_create(buffer_size, CEL_BUFFER_UNIFORM, CEL_BUFFER_FLAG_CPU, NULL);
            buffers[frame_i] = context.buffers[uniform_buf_handle.raw].handle;
            vkMapMemory(context.device->logical_device, uniform_buf_memorys[frame_i], 0,
                        uniform_buf_size, 0, &uniform_buf_mem_mappings[frame_i]);
          }

          desc_set_uniform_buffer uniform_data;
          memcpy(&uniform_data.buffers, &buffers, sizeof(buffers));
          memcpy(&uniform_data.uniform_buf_memorys, &uniform_buf_memorys,
                 sizeof(uniform_buf_memorys));
          memcpy(&uniform_data.uniform_buf_mem_mappings, &uniform_buf_mem_mappings,
                 sizeof(uniform_buf_mem_mappings));
          uniform_data.size = buffer_size;

          pipeline->uniform_pointers[j] = uniform_data;

          break;
        default:
          ERROR_EXIT("Unimplemented binding type!! in backend_vulkan");
      }
      switch (sdl.bindings[j].vis) {
        case VISIBILITY_VERTEX:
          desc_set_bindings[j].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
          break;
        case VISIBILITY_FRAGMENT:
          desc_set_bindings[j].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
          break;
        case VISIBILITY_COMPUTE:
          WARN("Compute is not implemented yet");
          break;
      }
    }

    VkDescriptorSetLayoutCreateInfo desc_set_layout_info = {
      VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO
    };
    desc_set_layout_info.bindingCount = sdl.bindings_count;
    desc_set_layout_info.pBindings = desc_set_bindings;

    VK_CHECK(vkCreateDescriptorSetLayout(context.device->logical_device, &desc_set_layout_info,
                                         context.allocator, &desc_set_layouts[i]));
  }

  // Layout
  VkPipelineLayoutCreateInfo pipeline_layout_create_info = {
    VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO
  };
  pipeline_layout_create_info.setLayoutCount = 0;
  pipeline_layout_create_info.pSetLayouts = NULL;
  pipeline_layout_create_info.pushConstantRangeCount = 0;
  pipeline_layout_create_info.pPushConstantRanges = NULL;
  VK_CHECK(vkCreatePipelineLayout(context.device->logical_device, &pipeline_layout_create_info,
                                  context.allocator, &layout->handle));
  pipeline->layout_handle = layout->handle;  // keep a copy of the layout on the pipeline object

  VkGraphicsPipelineCreateInfo pipeline_create_info = {
    VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO
  };

  pipeline_create_info.stageCount = 2;
  pipeline_create_info.pStages = shader_stages;
  pipeline_create_info.pVertexInputState = &vertex_input_info;
  pipeline_create_info.pInputAssemblyState = &input_assembly;

  pipeline_create_info.pViewportState = &viewport_state;
  pipeline_create_info.pRasterizationState = &rasterizer_create_info;
  pipeline_create_info.pMultisampleState = &ms_create_info;
  pipeline_create_info.pDepthStencilState = NULL;  // &depth_stencil;
  pipeline_create_info.pColorBlendState = &color_blend;
  pipeline_create_info.pDynamicState = &dynamic_state;
  pipeline_create_info.pTessellationState = 0;

  pipeline_create_info.layout = layout->handle;

  pipeline_create_info.renderPass = description.renderpass->handle;
  pipeline_create_info.subpass = 0;
  pipeline_create_info.basePipelineHandle = VK_NULL_HANDLE;
  pipeline_create_info.basePipelineIndex = -1;

  VkResult result =
      vkCreateGraphicsPipelines(context.device->logical_device, VK_NULL_HANDLE, 1,
                                &pipeline_create_info, context.allocator, &pipeline->handle);
  if (result != VK_SUCCESS) {
    FATAL("graphics pipeline creation failed. its fked mate");
    ERROR_EXIT("Doomed");
  }

  // once the pipeline has been created we can destroy these
  vkDestroyShaderModule(context.device->logical_device, vertex_shader, context.allocator);
  vkDestroyShaderModule(context.device->logical_device, fragment_shader, context.allocator);

  // Framebuffers
  create_swapchain_framebuffers();
  TRACE("Swapchain Framebuffers created");

  for (u32 frame_i = 0; frame_i < MAX_FRAMES_IN_FLIGHT; frame_i++) {
    context.main_cmd_bufs[frame_i] = gpu_cmd_encoder_create();
  }
  TRACE("main Command Buffer created");

  TRACE("Graphics pipeline created");
  return pipeline;
}

void gpu_pipeline_destroy(gpu_pipeline* pipeline) {
  vkDestroyPipeline(context.device->logical_device, pipeline->handle, context.allocator);
  vkDestroyPipelineLayout(context.device->logical_device, pipeline->layout_handle,
                          context.allocator);
}

gpu_cmd_encoder* gpu_get_default_cmd_encoder() {
  return &context.main_cmd_bufs[context.current_frame];
}

gpu_renderpass* gpu_renderpass_create(const gpu_renderpass_desc* description) {
  // TEMP: allocate with malloc. in the future we will have a pool allocator on the context
  gpu_renderpass* renderpass = malloc(sizeof(gpu_renderpass));

  // Colour attachment
  VkAttachmentDescription color_attachment;
  color_attachment.format = context.swapchain->image_format.format;
  color_attachment.samples = VK_SAMPLE_COUNT_1_BIT;
  color_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
  color_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
  color_attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
  color_attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
  color_attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  color_attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
  color_attachment.flags = 0;

  // attachment_descriptions[0] = color_attachment;

  VkAttachmentReference color_attachment_reference;
  color_attachment_reference.attachment = 0;
  color_attachment_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

  // subpass.colorAttachmentCount = 1;
  // subpass.pColorAttachments = &color_attachment_reference;

  // TODO: Depth attachment

  // main subpass
  VkSubpassDescription subpass = { 0 };
  subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
  subpass.colorAttachmentCount = 1;
  subpass.pColorAttachments = &color_attachment_reference;

  // sets everything up
  // renderpass dependencies
  VkSubpassDependency dependency;
  dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
  dependency.dstSubpass = 0;
  dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  dependency.srcAccessMask = 0;
  dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  dependency.dstAccessMask =
      VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
  dependency.dependencyFlags = 0;

  // Finally, create the RenderPass
  VkRenderPassCreateInfo render_pass_create_info = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
  render_pass_create_info.attachmentCount = 1;
  render_pass_create_info.pAttachments = &color_attachment;
  render_pass_create_info.subpassCount = 1;
  render_pass_create_info.pSubpasses = &subpass;
  render_pass_create_info.dependencyCount = 1;
  render_pass_create_info.pDependencies = &dependency;
  render_pass_create_info.flags = 0;
  render_pass_create_info.pNext = 0;

  VK_CHECK(vkCreateRenderPass(context.device->logical_device, &render_pass_create_info,
                              context.allocator, &renderpass->handle));

  // HACK
  context.main_renderpass = renderpass->handle;

  return renderpass;
}

void encode_set_pipeline(gpu_cmd_encoder* encoder, gpu_pipeline* pipeline) {
  //                        VK_PIPELINE_BIND_POINT_GRAPHICS, &shader->pipeline);
  // if (kind == PIPELINE_GRAPHICS) {
  //   // ...
  // } else {
  //   // ...
  // }
}

gpu_cmd_encoder gpu_cmd_encoder_create() {
  // gpu_cmd_encoder* encoder = malloc(sizeof(gpu_cmd_encoder)); // TODO: fix leaking mem
  gpu_cmd_encoder encoder = { 0 };

  VkCommandBufferAllocateInfo allocate_info = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO };
  allocate_info.commandPool = context.device->pool;
  allocate_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
  allocate_info.commandBufferCount = 1;
  allocate_info.pNext = NULL;

  VK_CHECK(vkAllocateCommandBuffers(context.device->logical_device, &allocate_info,
                                    &encoder.cmd_buffer););

  VkDescriptorPoolSize uniform_pool_size;
  uniform_pool_size.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
  uniform_pool_size.descriptorCount = MAX_FRAMES_IN_FLIGHT *  MAX_DESCRIPTOR_SETS;

  VkDescriptorPoolCreateInfo pool_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO };
  pool_info.poolSizeCount = 1;
  pool_info.pPoolSizes = &uniform_pool_size;
  pool_info.maxSets = 10000;

  VK_CHECK(vkCreateDescriptorPool(context.device->logical_device, &pool_info, context.allocator,
                                  &encoder.descriptor_pool));

  return encoder;
}
void gpu_cmd_encoder_destroy(gpu_cmd_encoder* encoder) {
  vkFreeCommandBuffers(context.device->logical_device, context.device->pool, 1,
                       &encoder->cmd_buffer);
}

void gpu_cmd_encoder_begin(gpu_cmd_encoder encoder) {
  VkCommandBufferBeginInfo begin_info = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
  VK_CHECK(vkBeginCommandBuffer(encoder.cmd_buffer, &begin_info));
}

void gpu_cmd_encoder_begin_render(gpu_cmd_encoder* encoder, gpu_renderpass* renderpass) {
  VkRenderPassBeginInfo begin_info = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO };
  begin_info.renderPass = renderpass->handle;
  /* printf("Current img: %d Current frame %d\n", context.current_img_index, context.current_frame);
   */
  begin_info.framebuffer = context.swapchain_framebuffers[context.current_img_index];
  begin_info.renderArea.offset = (VkOffset2D){ 0, 0 };
  begin_info.renderArea.extent = context.swapchain->extent;

  // VkClearValue clear_values[2];
  VkClearValue clear_color = { { { 0.02f, 0.02f, 0.02f, 1.0f } } };
  // clear_values[1].depthStencil.depth = renderpass->depth;
  // clear_values[1].depthStencil.stencil = renderpass->stencil;

  begin_info.clearValueCount = 1;
  begin_info.pClearValues = &clear_color;

  vkCmdBeginRenderPass(encoder->cmd_buffer, &begin_info, VK_SUBPASS_CONTENTS_INLINE);
  // command_buffer->state = COMMAND_BUFFER_STATE_IN_RENDER_PASS;
}

void gpu_cmd_encoder_end_render(gpu_cmd_encoder* encoder) {
  vkCmdEndRenderPass(encoder->cmd_buffer);
}

gpu_cmd_buffer gpu_cmd_encoder_finish(gpu_cmd_encoder* encoder) {
  vkEndCommandBuffer(encoder->cmd_buffer);
  // TEMP: submit
  return (gpu_cmd_buffer){ .cmd_buffer = encoder->cmd_buffer };
}

// --- Binding
void encode_bind_pipeline(gpu_cmd_encoder* encoder, pipeline_kind kind, gpu_pipeline* pipeline) {
  vkCmdBindPipeline(encoder->cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->handle);
  encoder->pipeline = pipeline;
}

void encode_bind_shader_data(gpu_cmd_encoder* encoder, u32 group, shader_data* data) {
  assert(data->data != NULL);

  // Update the local buffer
  desc_set_uniform_buffer ubo = encoder->pipeline->uniform_pointers[group];
  memcpy(ubo.uniform_buf_mem_mappings[context.current_frame], data->data, ubo.size);

  VkDescriptorSetAllocateInfo alloc_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO };
  alloc_info.descriptorPool =encoder->descriptor_pool;
  alloc_info.descriptorSetCount = 1;
    alloc_info.pSetLayouts = &encoder->pipeline->desc_set_layouts[group];

    VkDescriptorSet sets[1];
  VK_CHECK(vkAllocateDescriptorSets(context.device->logical_device, &alloc_info,
                                    sets));

}

void encode_set_vertex_buffer(gpu_cmd_encoder* encoder, buffer_handle buf) {
  gpu_buffer buffer = context.buffers[buf.raw];
  VkBuffer vbs[] = { buffer.handle };
  VkDeviceSize offsets[] = { 0 };
  vkCmdBindVertexBuffers(encoder->cmd_buffer, 0, 1, vbs, offsets);
}

void encode_set_index_buffer(gpu_cmd_encoder* encoder, buffer_handle buf) {
  gpu_buffer buffer = context.buffers[buf.raw];
  vkCmdBindIndexBuffer(encoder->cmd_buffer, buffer.handle, 0, VK_INDEX_TYPE_UINT16);
}

// TEMP
void encode_set_default_settings(gpu_cmd_encoder* encoder) {
  VkViewport viewport = { 0 };
  viewport.x = 0.0f;
  viewport.y = 0.0f;
  viewport.width = context.swapchain->extent.width;
  viewport.height = context.swapchain->extent.height;
  viewport.minDepth = 0.0f;
  viewport.maxDepth = 1.0f;
  vkCmdSetViewport(encoder->cmd_buffer, 0, 1, &viewport);

  VkRect2D scissor = { 0 };
  scissor.offset = (VkOffset2D){ 0, 0 };
  scissor.extent = context.swapchain->extent;
  vkCmdSetScissor(encoder->cmd_buffer, 0, 1, &scissor);
}

// --- Drawing

bool gpu_backend_begin_frame() {
  u32 current_frame = context.current_frame;
  vkWaitForFences(context.device->logical_device, 1, &context.in_flight_fences[current_frame],
                  VK_TRUE, UINT64_MAX);

  u32 image_index;
  VkResult result = vkAcquireNextImageKHR(
      context.device->logical_device, context.swapchain->handle, UINT64_MAX,
      context.image_available_semaphores[current_frame], VK_NULL_HANDLE, &image_index);
  if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || context.is_resizing) {
    ERROR("Acquire next image failure. recreate swapchain");
    context.is_resizing = false;
    recreate_swapchain(context.swapchain);
    return false;
  } else if (result != VK_SUCCESS) {
    ERROR_EXIT("failed to acquire swapchain image");
  }

  vkResetFences(context.device->logical_device, 1, &context.in_flight_fences[current_frame]);

  context.current_img_index = image_index;
  /* printf("Current img: %d\n", context.current_img_index); */
  VK_CHECK(vkResetCommandBuffer(context.main_cmd_bufs[current_frame].cmd_buffer, 0));
  return true;
}

void gpu_temp_draw(size_t n_indices) {
  gpu_cmd_encoder* encoder = gpu_get_default_cmd_encoder();  // &context.main_cmd_buf;
  /* vkCmdDraw(encoder->cmd_buffer, n_verts, 1, 0, 0); */
  vkCmdDrawIndexed(encoder->cmd_buffer, n_indices, 1, 0, 0, 0);
}

void gpu_backend_end_frame() {
  VkPresentInfoKHR present_info = { VK_STRUCTURE_TYPE_PRESENT_INFO_KHR };
  present_info.waitSemaphoreCount = 1;
  present_info.pWaitSemaphores = &context.render_finished_semaphores[context.current_frame];

  VkSwapchainKHR swapchains[] = { context.swapchain->handle };
  present_info.swapchainCount = 1;
  present_info.pSwapchains = swapchains;
  present_info.pImageIndices = &context.current_img_index;

  VkResult result = vkQueuePresentKHR(context.device->present_queue, &present_info);
  if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
    ERROR("Queue present error. recreate swapchain");
    recreate_swapchain(context.swapchain);
    return;
  } else if (result != VK_SUCCESS) {
    ERROR_EXIT("failed to present swapchain image");
  }
  context.current_frame = (context.current_frame + 1) % MAX_FRAMES_IN_FLIGHT;

  /* vkDeviceWaitIdle(context.device->logical_device); */
}

// TODO: Move into better order in file
void gpu_queue_submit(gpu_cmd_buffer* buffer) {
  VkSubmitInfo submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO };

  // Specify semaphore to wait on
  VkSemaphore wait_semaphores[] = { context.image_available_semaphores[context.current_frame] };
  VkPipelineStageFlags wait_stages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };

  submit_info.waitSemaphoreCount = 1;
  submit_info.pWaitSemaphores = wait_semaphores;
  submit_info.pWaitDstStageMask = wait_stages;

  // Specify semaphore to signal when finished executing buffer
  VkSemaphore signal_semaphores[] = { context.render_finished_semaphores[context.current_frame] };
  submit_info.signalSemaphoreCount = 1;
  submit_info.pSignalSemaphores = signal_semaphores;

  submit_info.commandBufferCount = 1;
  submit_info.pCommandBuffers = &buffer->cmd_buffer;

  VK_CHECK(vkQueueSubmit(context.device->graphics_queue, 1, &submit_info,
                         context.in_flight_fences[context.current_frame]));
}

inline void encode_draw_indexed(gpu_cmd_encoder* encoder, u64 index_count) {
  vkCmdDrawIndexed(encoder->cmd_buffer, index_count, 1, 0, 0, 0);
}

bool select_physical_device(gpu_device* out_device) {
  u32 physical_device_count = 0;
  VK_CHECK(vkEnumeratePhysicalDevices(context.instance, &physical_device_count, 0));
  if (physical_device_count == 0) {
    FATAL("No devices that support vulkan were found");
    return false;
  }
  TRACE("Number of devices found %d", physical_device_count);

  VkPhysicalDevice* physical_devices =
      arena_alloc(&context.temp_arena, physical_device_count * sizeof(VkPhysicalDevice));
  VK_CHECK(vkEnumeratePhysicalDevices(context.instance, &physical_device_count, physical_devices));

  bool found = false;
  for (u32 device_i = 0; device_i < physical_device_count; device_i++) {
    if (is_physical_device_suitable(physical_devices[device_i])) {
      out_device->physical_device = physical_devices[device_i];
      found = true;
      break;
    }
  }

  if (!found) {
    FATAL("Couldn't find a suitable physical device");
    return false;
  }

  vkGetPhysicalDeviceProperties(out_device->physical_device, &out_device->properties);
  vkGetPhysicalDeviceFeatures(out_device->physical_device, &out_device->features);
  vkGetPhysicalDeviceMemoryProperties(out_device->physical_device, &out_device->memory);

  return true;
}

bool is_physical_device_suitable(VkPhysicalDevice device) {
  VkPhysicalDeviceProperties properties;
  vkGetPhysicalDeviceProperties(device, &properties);

  VkPhysicalDeviceFeatures features;
  vkGetPhysicalDeviceFeatures(device, &features);

  VkPhysicalDeviceMemoryProperties memory;
  vkGetPhysicalDeviceMemoryProperties(device, &memory);

  // TODO: Check against these device properties

  queue_family_indices indices = find_queue_families(device);

  vulkan_device_query_swapchain_support(device, context.surface, &context.swapchain_support);

  return indices.has_graphics && indices.has_present && context.swapchain_support.mode_count > 0 &&
         context.swapchain_support.format_count > 0;
}

queue_family_indices find_queue_families(VkPhysicalDevice device) {
  queue_family_indices indices = { 0 };

  u32 queue_family_count = 0;
  vkGetPhysicalDeviceQueueFamilyProperties(device, &queue_family_count, 0);

  VkQueueFamilyProperties* queue_families =
      arena_alloc(&context.temp_arena, queue_family_count * sizeof(VkQueueFamilyProperties));
  vkGetPhysicalDeviceQueueFamilyProperties(device, &queue_family_count, queue_families);

  for (u32 q_fam_i = 0; q_fam_i < queue_family_count; q_fam_i++) {
    // Graphics queue
    if (queue_families[q_fam_i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
      indices.graphics_family_index = q_fam_i;
      indices.has_graphics = true;
    }

    VkBool32 present_support = false;
    vkGetPhysicalDeviceSurfaceSupportKHR(device, q_fam_i, context.surface, &present_support);
    if (present_support && !indices.has_present) {
      indices.present_family_index = q_fam_i;
      indices.has_present = true;
    }
  }

  return indices;
}

bool create_logical_device(gpu_device* out_device) {
  queue_family_indices indices = find_queue_families(out_device->physical_device);
  INFO(" %s | %s | %s | %s | %s", bool_str(indices.has_graphics), bool_str(indices.has_present),
       bool_str(indices.has_compute), bool_str(indices.has_transfer),
       out_device->properties.deviceName);
  TRACE("Graphics Family queue index: %d", indices.graphics_family_index);
  TRACE("Present Family queue index: %d", indices.present_family_index);
  TRACE("Compute Family queue index: %d", indices.compute_family_index);
  TRACE("Transfer Family queue index: %d", indices.transfer_family_index);

  // Queues
  f32 prio_one = 1.0;
  VkDeviceQueueCreateInfo queue_create_infos[1] = { 0 };
  queue_create_infos[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
  queue_create_infos[0].queueFamilyIndex = indices.graphics_family_index;
  queue_create_infos[0].queueCount = 1;
  queue_create_infos[0].pQueuePriorities = &prio_one;
  queue_create_infos[0].flags = 0;
  queue_create_infos[0].pNext = 0;

  // queue_create_infos[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
  // queue_create_infos[1].queueFamilyIndex = indices.present_family_index;
  // queue_create_infos[1].queueCount = 1;
  // queue_create_infos[1].pQueuePriorities = &prio_one;
  // queue_create_infos[1].flags = 0;
  // queue_create_infos[1].pNext = 0;

  // Features
  VkPhysicalDeviceFeatures device_features = { 0 };
  device_features.samplerAnisotropy = VK_TRUE;  // request anistrophy

  // Device itself
  VkDeviceCreateInfo device_create_info = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO };
  device_create_info.queueCreateInfoCount = 1;
  device_create_info.pQueueCreateInfos = queue_create_infos;
  device_create_info.pEnabledFeatures = &device_features;
  device_create_info.enabledExtensionCount = 1;
  const char* extension_names = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
  device_create_info.ppEnabledExtensionNames = &extension_names;

  // deprecated
  device_create_info.enabledLayerCount = 0;
  device_create_info.ppEnabledLayerNames = 0;

  VkResult result = vkCreateDevice(context.device->physical_device, &device_create_info,
                                   context.allocator, &context.device->logical_device);
  if (result != VK_SUCCESS) {
    printf("error creating logical device with status %u\n", result);
    ERROR_EXIT("Unable to create vulkan logical device. Exiting..");
  }
  TRACE("Logical device created");

  context.device->queue_family_indicies = indices;

  // Retrieve queue handles
  vkGetDeviceQueue(context.device->logical_device, indices.graphics_family_index, 0,
                   &context.device->graphics_queue);
  vkGetDeviceQueue(context.device->logical_device, indices.present_family_index, 0,
                   &context.device->present_queue);

  return true;
}

VkShaderModule create_shader_module(str8 spirv) {
  VkShaderModuleCreateInfo create_info = { VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO };
  create_info.codeSize = spirv.len;
  create_info.pCode = (uint32_t*)spirv.buf;

  VkShaderModule shader_module;
  VK_CHECK(vkCreateShaderModule(context.device->logical_device, &create_info, context.allocator,
                                &shader_module));

  return shader_module;
}


void create_descriptor_pools() {}

void create_swapchain_framebuffers() {
  WARN("Recreating framebuffers...");
  u32 image_count = context.swapchain->image_count;
  context.swapchain_framebuffers =
      arena_alloc(&context.swapchain->swapchain_arena, image_count * sizeof(VkFramebuffer));
  for (u32 i = 0; i < image_count; i++) {
    VkImageView attachments[1] = { context.swapchain->image_views[i] };

    VkFramebufferCreateInfo framebuffer_create_info = { VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO };
    framebuffer_create_info.attachmentCount = 1;
    framebuffer_create_info.pAttachments = attachments;

    framebuffer_create_info.renderPass =
        context.main_renderpass;  // TODO:  description.renderpass->handle;
    framebuffer_create_info.width = context.swapchain->extent.width;
    framebuffer_create_info.height = context.swapchain->extent.height;
    framebuffer_create_info.layers = 1;

    VK_CHECK(vkCreateFramebuffer(context.device->logical_device, &framebuffer_create_info,
                                 context.allocator, &context.swapchain_framebuffers[i]));
  }
}

void create_sync_objects() {
  VkSemaphoreCreateInfo semaphore_info = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO };
  VkFenceCreateInfo fence_info = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO };
  fence_info.flags = VK_FENCE_CREATE_SIGNALED_BIT;

  for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
    VK_CHECK(vkCreateSemaphore(context.device->logical_device, &semaphore_info, context.allocator,
                               &context.image_available_semaphores[i]););
    VK_CHECK(vkCreateSemaphore(context.device->logical_device, &semaphore_info, context.allocator,
                               &context.render_finished_semaphores[i]););

    VK_CHECK(vkCreateFence(context.device->logical_device, &fence_info, context.allocator,
                           &context.in_flight_fences[i]));
  }
}

static i32 find_memory_index(u32 type_filter, u32 property_flags) {
  VkPhysicalDeviceMemoryProperties memory_properties;
  vkGetPhysicalDeviceMemoryProperties(context.device->physical_device, &memory_properties);

  for (u32 i = 0; i < memory_properties.memoryTypeCount; ++i) {
    // Check each memory type to see if its bit is set to 1.
    if (type_filter & (1 << i) &&
        (memory_properties.memoryTypes[i].propertyFlags & property_flags) == property_flags) {
      return i;
    }
  }

  WARN("Unable to find suitable memory type!");
  return -1;
}

buffer_handle gpu_buffer_create(u64 size, gpu_buffer_type buf_type, gpu_buffer_flags flags,
                                const void* data) {
  VkBufferCreateInfo buffer_info = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
  buffer_info.size = size;
  buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

  switch (buf_type) {
    case CEL_BUFFER_DEFAULT:
      buffer_info.usage |= VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
      break;
    case CEL_BUFFER_VERTEX:
      buffer_info.usage |= VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
      break;
    case CEL_BUFFER_INDEX:
      buffer_info.usage |= VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
      break;
    case CEL_BUFFER_COUNT:
      WARN("Incorrect gpu_buffer_type provided. using default");
      break;
  }

  buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

  // "allocating" the cpu-side buffer struct
  gpu_buffer buffer;
  buffer.size = size;
  buffer_handle handle = { .raw = (u32)context.buffer_count };

  VK_CHECK(vkCreateBuffer(context.device->logical_device, &buffer_info, context.allocator,
                          &buffer.handle));

  VkMemoryRequirements requirements;
  vkGetBufferMemoryRequirements(context.device->logical_device, buffer.handle, &requirements);

  // Just make them always need all of them for now
  i32 memory_index =
      find_memory_index(requirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
                                                         VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
                                                         VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);

  // Allocate the actual VRAM
  VkMemoryAllocateInfo allocate_info = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
  allocate_info.allocationSize = requirements.size;
  allocate_info.memoryTypeIndex = (u32)memory_index;

  vkAllocateMemory(context.device->logical_device, &allocate_info, context.allocator,
                   &buffer.memory);
  vkBindBufferMemory(context.device->logical_device, buffer.handle, buffer.memory, 0);

  /* Now there are two options:
   *   1. create CPU-accessible memory -> map memory -> memcpy -> unmap
   *   2. use a staging buffer thats CPU-accessible and copy its contents to a
   *      GPU-only buffer
   */

  context.buffers[context.buffer_count] = buffer;
  context.buffer_count++;

  if (data) {
    TRACE("Upload data as part of buffer creation");
    if (flags & CEL_BUFFER_FLAG_CPU) {
      // map memory -> copy data in -> unmap memory
      buffer_upload_bytes(handle, (bytebuffer){ .buf = (u8*)data, .size = size }, 0, size);
    } else if (flags & CEL_BUFFER_FLAG_GPU) {
      TRACE("Uploading data to buffer using staging buffer");
      // Create a staging buffer
      buffer_handle staging = gpu_buffer_create(size, buf_type, CEL_BUFFER_FLAG_CPU, NULL);

      // Copy data into it
      buffer_upload_bytes(staging, (bytebuffer){ .buf = (u8*)data, .size = size }, 0, size);

      // Enqueue a copy from the staging buffer into the DEVICE_LOCAL buffer
      gpu_cmd_encoder temp_encoder = gpu_cmd_encoder_create();
      gpu_cmd_encoder_begin(temp_encoder);
      encode_buffer_copy(&temp_encoder, staging, 0, handle, 0, size);
      gpu_cmd_buffer copy_cmd_buffer = gpu_cmd_encoder_finish(&temp_encoder);

      VkSubmitInfo submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO };
      submit_info.commandBufferCount = 1;
      submit_info.pCommandBuffers = &temp_encoder.cmd_buffer;
      vkQueueSubmit(context.device->graphics_queue, 1, &submit_info, VK_NULL_HANDLE);

      // Cleanup
      vkQueueWaitIdle(context.device->graphics_queue);
      gpu_cmd_encoder_destroy(&temp_encoder);
      gpu_buffer_destroy(staging);
    }
  }

  return handle;
}

void gpu_buffer_destroy(buffer_handle buffer) {
  gpu_buffer b = context.buffers[buffer.raw];
  vkDestroyBuffer(context.device->logical_device, b.handle, context.allocator);
  vkFreeMemory(context.device->logical_device, b.memory, context.allocator);
}

// Upload data to a
void buffer_upload_bytes(buffer_handle gpu_buf, bytebuffer cpu_buf, u64 offset, u64 size) {
  gpu_buffer buffer = context.buffers[gpu_buf.raw];
  void* data_ptr;
  vkMapMemory(context.device->logical_device, buffer.memory, 0, size, 0, &data_ptr);
  DEBUG("Uploading %d bytes to buffer", size);
  memcpy(data_ptr, cpu_buf.buf, size);
  vkUnmapMemory(context.device->logical_device, buffer.memory);
}

void encode_buffer_copy(gpu_cmd_encoder* encoder, buffer_handle src, u64 src_offset,
                        buffer_handle dst, u64 dst_offset, u64 copy_size) {
  VkBufferCopy copy_region;
  copy_region.srcOffset = src_offset;
  copy_region.dstOffset = dst_offset;
  copy_region.size = copy_size;

  vkCmdCopyBuffer(encoder->cmd_buffer, context.buffers[src.raw].handle,
                  context.buffers[dst.raw].handle, 1, &copy_region);
}