summaryrefslogtreecommitdiff
path: root/src/renderer/backends/opengl/backend_opengl.c
blob: 7d632c716af45e35a83b0792312d14381bdb38f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include "builtin_materials.h"
#include "colours.h"
#include "maths.h"
#include "opengl_helpers.h"
#include "ral_types.h"
#define CEL_REND_BACKEND_OPENGL
#if defined(CEL_REND_BACKEND_OPENGL)
#include <assert.h>
#include <stdlib.h>

#include "backend_opengl.h"
#include "defines.h"
#include "file.h"
#include "log.h"
#include "maths_types.h"
#include "ral.h"

#include <glad/glad.h>
#include <glfw3.h>

typedef struct opengl_context {
  GLFWwindow* window;
  arena pool_arena;
  gpu_cmd_encoder command_buffer;
  gpu_backend_pools gpu_pools;
  struct resource_pools* resource_pools;
} opengl_context;

static opengl_context context;

struct GLFWwindow;

bool gpu_backend_init(const char* window_name, struct GLFWwindow* window) {
  INFO("loading OpenGL backend");

  memset(&context, 0, sizeof(opengl_context));
  context.window = window;

  size_t pool_buffer_size = 1024 * 1024;
  context.pool_arena = arena_create(malloc(pool_buffer_size), pool_buffer_size);

  backend_pools_init(&context.pool_arena, &context.gpu_pools);
  context.resource_pools = malloc(sizeof(struct resource_pools));
  resource_pools_init(&context.pool_arena, context.resource_pools);

  glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
  glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 1);
  glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
  glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);

  // glad: load all opengl function pointers
  if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
    ERROR("Failed to initialise GLAD \n");
    return false;
  }

  glEnable(GL_DEPTH_TEST);
  glEnable(GL_CULL_FACE);

  return true;
}

void gpu_backend_shutdown() {}

bool gpu_device_create(gpu_device* out_device) { /* No-op in OpenGL */ }
void gpu_device_destroy() { /* No-op in OpenGL */ }

// --- Render Pipeline
gpu_pipeline* gpu_graphics_pipeline_create(struct graphics_pipeline_desc description) {
  static u32 ubo_count = 0;
  gpu_pipeline* pipeline = pipeline_pool_alloc(&context.gpu_pools.pipelines, NULL);

  // Create shader program
  u32 shader_id = shader_create_separate(description.vs.filepath.buf, description.fs.filepath.buf);
  pipeline->shader_id = shader_id;

  // Vertex format
  pipeline->vertex_desc = description.vertex_desc;

  // Allocate uniform buffers if needed
  // printf("data layouts %d\n", description.data_layouts_count);
  for (u32 layout_i = 0; layout_i < description.data_layouts_count; layout_i++) {
    shader_data_layout sdl = description.data_layouts[layout_i].shader_data_get_layout(NULL);
    TRACE("Got shader data layout %d's bindings! . found %d", layout_i, sdl.bindings_count);

    for (u32 binding_j = 0; binding_j < sdl.bindings_count; binding_j++) {
      u32 binding_id = binding_j;
      assert(binding_id < MAX_PIPELINE_UNIFORM_BUFFERS);
      shader_binding binding = sdl.bindings[binding_j];
      if (binding.type == SHADER_BINDING_BYTES) {
        static u32 s_binding_point = 0;
        buffer_handle ubo_handle =
            gpu_buffer_create(binding.data.bytes.size, CEL_BUFFER_UNIFORM, CEL_BUFFER_FLAG_GPU,
                              NULL);  // no data right now
        pipeline->uniform_bindings[binding_id] = ubo_handle;
        gpu_buffer* ubo_buf = BUFFER_GET(ubo_handle);

        i32 blockIndex = glGetUniformBlockIndex(pipeline->shader_id, binding.label);
        printf("Block index for Matrices: %d", blockIndex);
        if (blockIndex < 0) {
          WARN("Couldn't retrieve block index for uniform block '%s'", binding.label);
        } else {
          // DEBUG("Retrived block index %d for %s", blockIndex, binding.label);
        }
        u32 blocksize;
        glGetActiveUniformBlockiv(pipeline->shader_id, blockIndex, GL_UNIFORM_BLOCK_DATA_SIZE,
                                  &blocksize);
        printf("\t with size %d bytes\n", blocksize);

        glBindBufferBase(GL_UNIFORM_BUFFER, s_binding_point, ubo_buf->id.ubo);
        if (blockIndex != GL_INVALID_INDEX) {
          glUniformBlockBinding(pipeline->shader_id, blockIndex, s_binding_point);
        }
        ubo_buf->ubo_binding_point = s_binding_point++;
        assert(s_binding_point < GL_MAX_UNIFORM_BUFFER_BINDINGS);
      }
    }
  }

  pipeline->wireframe = description.wireframe;

  return pipeline;
}
void gpu_pipeline_destroy(gpu_pipeline* pipeline) {}

// --- Renderpass
gpu_renderpass* gpu_renderpass_create(const gpu_renderpass_desc* description) {
  gpu_renderpass* renderpass = renderpass_pool_alloc(&context.gpu_pools.renderpasses, NULL);

  memcpy(&renderpass->description, description, sizeof(gpu_renderpass_desc));

  if (!description->default_framebuffer) {
    GLuint gl_fbo_id;
    glGenFramebuffers(1, &gl_fbo_id);
    renderpass->fbo = gl_fbo_id;
  } else {
    renderpass->fbo = OPENGL_DEFAULT_FRAMEBUFFER;
    assert(!description->has_color_target);
    assert(!description->has_depth_stencil);
  }
  glBindFramebuffer(GL_FRAMEBUFFER, renderpass->fbo);

  if (description->has_color_target) {
    gpu_texture* colour_attachment = TEXTURE_GET(description->color_target);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, colour_attachment->id, 0); 
  }
  if (description->has_depth_stencil) {
    gpu_texture* depth_attachment = TEXTURE_GET(description->depth_stencil);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, depth_attachment->id, 0); 
  }

  glBindFramebuffer(GL_FRAMEBUFFER, 0); // reset to default framebuffer

  return renderpass;
}
void gpu_renderpass_destroy(gpu_renderpass* pass) {
  glDeleteFramebuffers(1, &pass->fbo);
}

// --- Swapchain
bool gpu_swapchain_create(gpu_swapchain* out_swapchain) {}
void gpu_swapchain_destroy(gpu_swapchain* swapchain) {}

// --- Command buffer
gpu_cmd_encoder gpu_cmd_encoder_create() {
  gpu_cmd_encoder encoder = { 0 };
  return encoder;
}
void gpu_cmd_encoder_destroy(gpu_cmd_encoder* encoder) {}
void gpu_cmd_encoder_begin(gpu_cmd_encoder encoder) {}
void gpu_cmd_encoder_begin_render(gpu_cmd_encoder* encoder, gpu_renderpass* renderpass) {
  glBindFramebuffer(GL_FRAMEBUFFER, renderpass->fbo);
  rgba clear_colour = STONE_800;
  glClearColor(clear_colour.r, clear_colour.g, clear_colour.b, 1.0f);
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
void gpu_cmd_encoder_end_render(gpu_cmd_encoder* encoder) {
  glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
void gpu_cmd_encoder_begin_compute() {}
gpu_cmd_encoder* gpu_get_default_cmd_encoder() { return &context.command_buffer; }

/** @brief Finish recording and return a command buffer that can be submitted to a queue */
gpu_cmd_buffer gpu_cmd_encoder_finish(gpu_cmd_encoder* encoder) {}

void gpu_queue_submit(gpu_cmd_buffer* buffer) {}

// --- Data copy commands
/** @brief Copy data from one buffer to another */
void encode_buffer_copy(gpu_cmd_encoder* encoder, buffer_handle src, u64 src_offset,
                        buffer_handle dst, u64 dst_offset, u64 copy_size) {}
/** @brief Upload CPU-side data as array of bytes to a GPU buffer */
void buffer_upload_bytes(buffer_handle gpu_buf, bytebuffer cpu_buf, u64 offset, u64 size) {
  // TODO: finish implementing this
  gpu_buffer* buf = BUFFER_GET(gpu_buf);
}

/** @brief Copy data from buffer to buffer using a one time submit command buffer and a wait */
void copy_buffer_to_buffer_oneshot(buffer_handle src, u64 src_offset, buffer_handle dst,
                                   u64 dst_offset, u64 copy_size) {}
/** @brief Copy data from buffer to an image using a one time submit command buffer */
void copy_buffer_to_image_oneshot(buffer_handle src, texture_handle dst) {}

// --- Render commands
void encode_bind_pipeline(gpu_cmd_encoder* encoder, pipeline_kind kind, gpu_pipeline* pipeline) {
  encoder->pipeline = pipeline;

  if (pipeline->wireframe) {
    glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
  } else {
    glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
  }

  // In OpenGL binding a pipeline is more or less equivalent to just setting the shader
  glUseProgram(pipeline->shader_id);
}
void encode_bind_shader_data(gpu_cmd_encoder* encoder, u32 group, shader_data* data) {
  shader_data_layout sdl = data->shader_data_get_layout(data->data);
  // printf("Binding %s shader data\n", sdl.name);

  for (u32 i = 0; i < sdl.bindings_count; i++) {
    shader_binding binding = sdl.bindings[i];
    // print_shader_binding(binding);

    if (binding.type == SHADER_BINDING_BYTES) {
      buffer_handle b = encoder->pipeline->uniform_bindings[i];
      gpu_buffer* ubo_buf = BUFFER_GET(b);

      i32 blockIndex = glGetUniformBlockIndex(encoder->pipeline->shader_id, binding.label);
      if (blockIndex < 0) {
        WARN("Couldn't retrieve block index for uniform block '%s'", binding.label);
      } else {
        // DEBUG("Retrived block index %d for %s", blockIndex, binding.label);
      }

      glBindBuffer(GL_UNIFORM_BUFFER, ubo_buf->id.ubo);
      glBufferSubData(GL_UNIFORM_BUFFER, 0, ubo_buf->size, binding.data.bytes.data);

    } else if (binding.type == SHADER_BINDING_TEXTURE) {
      gpu_texture* tex = TEXTURE_GET(binding.data.texture.handle);
      GLuint tex_slot = glGetUniformLocation(encoder->pipeline->shader_id, binding.label);
      glUniform1i(tex_slot, i);
      glActiveTexture(GL_TEXTURE0 + i);
      glBindTexture(GL_TEXTURE_2D, tex->id);
    }
  }
}
void encode_set_default_settings(gpu_cmd_encoder* encoder) {}
void encode_set_vertex_buffer(gpu_cmd_encoder* encoder, buffer_handle buf) {
  gpu_buffer* buffer = BUFFER_GET(buf);
  if (buffer->vao == 0) {  // if no VAO for this vertex buffer, create it
    INFO("Setting up VAO");
    buffer->vao = opengl_bindcreate_vao(buffer, encoder->pipeline->vertex_desc);
  }
  glBindVertexArray(buffer->vao);
}
void encode_set_index_buffer(gpu_cmd_encoder* encoder, buffer_handle buf) {
  gpu_buffer* buffer = BUFFER_GET(buf);
  glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer->id.ibo);
}
void encode_draw(gpu_cmd_encoder* encoder, u64 count) { glDrawArrays(GL_TRIANGLES, 0, count); }
void encode_draw_indexed(gpu_cmd_encoder* encoder, u64 index_count) {
  glDrawElements(GL_TRIANGLES, index_count, GL_UNSIGNED_INT, 0);
}
void encode_clear_buffer(gpu_cmd_encoder* encoder, buffer_handle buf) {}

// --- Buffers
buffer_handle gpu_buffer_create(u64 size, gpu_buffer_type buf_type, gpu_buffer_flags flags,
                                const void* data) {
  // "allocating" the cpu-side buffer struct
  buffer_handle handle;
  gpu_buffer* buffer = buffer_pool_alloc(&context.resource_pools->buffers, &handle);
  buffer->size = size;
  buffer->vao = 0;  // When we create a new buffer, there will be no VAO.

  // Opengl buffer
  GLuint gl_buffer_id;
  glGenBuffers(1, &gl_buffer_id);

  GLenum gl_buf_type;
  GLenum gl_buf_usage = GL_STATIC_DRAW;

  switch (buf_type) {
    case CEL_BUFFER_UNIFORM:
      DEBUG("Creating Uniform buffer");
      gl_buf_type = GL_UNIFORM_BUFFER;
      /* gl_buf_usage = GL_DYNAMIC_DRAW; */
      buffer->id.ubo = gl_buffer_id;
      break;
    case CEL_BUFFER_DEFAULT:
    case CEL_BUFFER_VERTEX:
      DEBUG("Creating Vertex buffer");
      gl_buf_type = GL_ARRAY_BUFFER;
      buffer->id.vbo = gl_buffer_id;
      break;
    case CEL_BUFFER_INDEX:
      DEBUG("Creating Index buffer");
      gl_buf_type = GL_ELEMENT_ARRAY_BUFFER;
      buffer->id.ibo = gl_buffer_id;
      break;
    default:
      WARN("Unimplemented gpu_buffer_type provided %s", buffer_type_names[buf_type]);
      break;
  }
  // bind buffer
  glBindBuffer(gl_buf_type, gl_buffer_id);

  if (data) {
    TRACE("Upload data (%d bytes) as part of buffer creation", size);
    glBufferData(gl_buf_type, buffer->size, data, gl_buf_usage);
  } else {
    TRACE("Allocating but not uploading (%d bytes)", size);
    glBufferData(gl_buf_type, buffer->size, NULL, gl_buf_usage);
  }

  glBindBuffer(gl_buf_type, 0);

  return handle;
}

void gpu_buffer_destroy(buffer_handle buffer) {}
void gpu_buffer_upload(const void* data) {}

texture_handle gpu_texture_create(texture_desc desc, bool create_view, const void* data) {
  // "allocating" the cpu-side struct
  texture_handle handle;
  gpu_texture* texture = texture_pool_alloc(&context.resource_pools->textures, &handle);
  DEBUG("Allocated texture with handle %d", handle.raw);

  GLuint gl_texture_id;
  glGenTextures(1, &gl_texture_id);
  texture->id = gl_texture_id;

  glBindTexture(GL_TEXTURE_2D, gl_texture_id);

  // set the texture wrapping parameters
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
                  GL_REPEAT);  // set texture wrapping to GL_REPEAT (default wrapping method)
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
  // set texture filtering parameters
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

  if (data) {
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, desc.extents.x, desc.extents.y, 0,
                 GL_RGBA,  // TODO: convert format to GL enum
                 GL_UNSIGNED_BYTE, data);
    glGenerateMipmap(GL_TEXTURE_2D);
  } else {
    WARN("No image data provided");
  }

  glBindTexture(GL_TEXTURE_2D, 0);

  return handle;
}

void gpu_texture_destroy(texture_handle) {}
void gpu_texture_upload(texture_handle texture, const void* data) {}

// --- Vertex formats
bytebuffer vertices_as_bytebuffer(arena* a, vertex_format format, vertex_darray* vertices) {}

// --- TEMP
bool gpu_backend_begin_frame() { return true; }
void gpu_backend_end_frame() {
  // TODO: Reset all bindings
  glfwSwapBuffers(context.window);
}
void gpu_temp_draw(size_t n_verts) {}

u32 shader_create_separate(const char* vert_shader, const char* frag_shader) {
  INFO("Load shaders at %s and %s", vert_shader, frag_shader);
  int success;
  char info_log[512];

  u32 vertex = glCreateShader(GL_VERTEX_SHADER);
  const char* vertex_shader_src = string_from_file(vert_shader);
  if (vertex_shader_src == NULL) {
    ERROR("EXIT: couldnt load shader");
    exit(-1);
  }
  glShaderSource(vertex, 1, &vertex_shader_src, NULL);
  glCompileShader(vertex);
  glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
  if (!success) {
    glGetShaderInfoLog(vertex, 512, NULL, info_log);
    printf("%s\n", info_log);
    ERROR("EXIT: vertex shader compilation failed");
    exit(-1);
  }

  // fragment shader
  u32 fragment = glCreateShader(GL_FRAGMENT_SHADER);
  const char* fragment_shader_src = string_from_file(frag_shader);
  if (fragment_shader_src == NULL) {
    ERROR("EXIT: couldnt load shader");
    exit(-1);
  }
  glShaderSource(fragment, 1, &fragment_shader_src, NULL);
  glCompileShader(fragment);
  glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
  if (!success) {
    glGetShaderInfoLog(fragment, 512, NULL, info_log);
    printf("%s\n", info_log);
    ERROR("EXIT: fragment shader compilation failed");
    exit(-1);
  }

  u32 shader_prog;
  shader_prog = glCreateProgram();

  glAttachShader(shader_prog, vertex);
  glAttachShader(shader_prog, fragment);
  glLinkProgram(shader_prog);
  glDeleteShader(vertex);
  glDeleteShader(fragment);
  free((char*)vertex_shader_src);
  free((char*)fragment_shader_src);

  return shader_prog;
}

inline void uniform_vec3f(u32 program_id, const char* uniform_name, vec3* value) {
  glUniform3fv(glGetUniformLocation(program_id, uniform_name), 1, &value->x);
}
inline void uniform_f32(u32 program_id, const char* uniform_name, f32 value) {
  glUniform1f(glGetUniformLocation(program_id, uniform_name), value);
}
inline void uniform_i32(u32 program_id, const char* uniform_name, i32 value) {
  glUniform1i(glGetUniformLocation(program_id, uniform_name), value);
}
inline void uniform_mat4f(u32 program_id, const char* uniform_name, mat4* value) {
  glUniformMatrix4fv(glGetUniformLocation(program_id, uniform_name), 1, GL_FALSE, value->data);
}

// void clear_screen(vec3 colour) {
//   glClearColor(colour.x, colour.y, colour.z, 1.0f);
//   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// }

// void texture_data_upload(texture *tex) {
//   printf("Texture name %s\n", tex->name);
//   TRACE("Upload texture data");
//   u32 texture_id;
//   glGenTextures(1, &texture_id);
//   glBindTexture(GL_TEXTURE_2D, texture_id);
//   tex->texture_id = texture_id;

//   // set the texture wrapping parameters
//   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
//                   GL_REPEAT);  // set texture wrapping to GL_REPEAT (default wrapping method)
//   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
//   // set texture filtering parameters
//   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
//   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

//   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, tex->width, tex->height, 0, tex->channel_type,
//                GL_UNSIGNED_BYTE, tex->image_data);
//   glGenerateMipmap(GL_TEXTURE_2D);
//   DEBUG("Freeing texture image data after uploading to GPU");
//   // stbi_image_free(tex->image_data);  // data is on gpu now so we dont need it around
// }

// void bind_texture(shader s, texture *tex, u32 slot) {
//   // printf("bind texture slot %d with texture id %d \n", slot, tex->texture_id);
//   glActiveTexture(GL_TEXTURE0 + slot);
//   glBindTexture(GL_TEXTURE_2D, tex->texture_id);
// }

// void bind_mesh_vertex_buffer(void *_backend, mesh *mesh) { glBindVertexArray(mesh->vao); }

// static inline GLenum to_gl_prim_topology(enum cel_primitive_topology primitive) {
//   switch (primitive) {
//     case CEL_PRIMITIVE_TOPOLOGY_TRIANGLE:
//       return GL_TRIANGLES;
//     case CEL_PRIMITIVE_TOPOLOGY_POINT:
//     case CEL_PRIMITIVE_TOPOLOGY_LINE:
//     case CEL_PRIMITIVE_TOPOLOGY_LINE_STRIP:
//     case CEL_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
//     case CEL_PRIMITIVE_TOPOLOGY_COUNT:
//       break;
//   }
// }
#endif