summaryrefslogtreecommitdiff
path: root/src/resources/gltf.c
blob: c575fb9cb73d953f05f698c9c8c602aa1efb35ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "animation.h"
#include "colours.h"
#include "core.h"
#include "defines.h"
#include "file.h"
#include "loaders.h"
#include "log.h"
#include "maths.h"
#include "maths_types.h"
#include "mem.h"
#include "path.h"
#include "pbr.h"
#include "ral_types.h"
#include "render.h"
#include "render_types.h"
#include "str.h"

#define CGLTF_IMPLEMENTATION
#include <cgltf.h>

extern Core g_core;

/* GLTF Loading Pipeline
   ===================== */

struct face {
  cgltf_uint indices[3];
};
typedef struct face face;

KITC_DECL_TYPED_ARRAY(Vec3)
KITC_DECL_TYPED_ARRAY(Vec2)
KITC_DECL_TYPED_ARRAY(Vec4u)
KITC_DECL_TYPED_ARRAY(Vec4)
KITC_DECL_TYPED_ARRAY(face)
// KITC_DECL_TYPED_ARRAY(joint)

bool model_load_gltf_str(const char *file_string, const char *filepath, Str8 relative_path,
                         Model *out_model, bool invert_textures_y);

ModelHandle ModelLoad_gltf(const char *path, bool invert_texture_y) {
  size_t arena_size = MB(1);
  arena scratch = arena_create(malloc(arena_size), arena_size);

  TRACE("Loading model at Path %s\n", path);
  path_opt relative_path = path_parent(&scratch, path);
  if (!relative_path.has_value) {
    WARN("Couldnt get a relative path for the path to use for loading materials & textures later");
  }
  const char *file_string = string_from_file(path);

  ModelHandle handle;
  Model *model = Model_pool_alloc(&g_core.models, &handle);
  model->name = Str8_cstr_view(path);
  model->meshes = Mesh_darray_new(1);
  model->materials = Material_darray_new(1);

  bool success =
      model_load_gltf_str(file_string, path, relative_path.path, model, invert_texture_y);

  if (!success) {
    FATAL("Couldnt load GLTF file at path %s", path);
    ERROR_EXIT("Load fails are considered crash-worthy right now. This will change later.\n");
  }

  arena_free_all(&scratch);
  arena_free_storage(&scratch);
  return handle;
}

void assert_path_type_matches_component_type(cgltf_animation_path_type target_path,
                                             cgltf_accessor *output) {
  if (target_path == cgltf_animation_path_type_rotation) {
    assert(output->component_type == cgltf_component_type_r_32f);
    assert(output->type == cgltf_type_vec4);
  }
}

// TODO: Brainstorm how I can make this simpler and break it up into more testable pieces

void load_position_components(Vec3_darray *positions, cgltf_accessor *accessor) {
  TRACE("Loading %d vec3 position components", accessor->count);
  CASSERT_MSG(accessor->component_type == cgltf_component_type_r_32f,
              "Positions components are floats");
  CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex positions should be a vec3");

  for (cgltf_size v = 0; v < accessor->count; ++v) {
    Vec3 pos;
    cgltf_accessor_read_float(accessor, v, &pos.x, 3);
    Vec3_darray_push(positions, pos);
  }
}

void load_normal_components(Vec3_darray *normals, cgltf_accessor *accessor) {
  TRACE("Loading %d vec3 normal components", accessor->count);
  CASSERT_MSG(accessor->component_type == cgltf_component_type_r_32f,
              "Normal vector components are floats");
  CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex normals should be a vec3");

  for (cgltf_size v = 0; v < accessor->count; ++v) {
    Vec3 pos;
    cgltf_accessor_read_float(accessor, v, &pos.x, 3);
    Vec3_darray_push(normals, pos);
  }
}

void load_texcoord_components(Vec2_darray *texcoords, cgltf_accessor *accessor) {
  TRACE("Load texture coordinates from accessor");
  CASSERT(accessor->component_type == cgltf_component_type_r_32f);
  CASSERT_MSG(accessor->type == cgltf_type_vec2, "Texture coordinates should be a vec2");

  for (cgltf_size v = 0; v < accessor->count; ++v) {
    Vec2 tex;
    bool success = cgltf_accessor_read_float(accessor, v, &tex.x, 2);
    if (!success) {
      ERROR("Error loading tex coord");
    }
    Vec2_darray_push(texcoords, tex);
  }
}

bool model_load_gltf_str(const char *file_string, const char *filepath, Str8 relative_path,
                         Model *out_model, bool invert_textures_y) {
  TRACE("Load GLTF from string");

  // Setup temps
  Vec3_darray *tmp_positions = Vec3_darray_new(1000);
  Vec3_darray *tmp_normals = Vec3_darray_new(1000);
  Vec2_darray *tmp_uvs = Vec2_darray_new(1000);
  Vec4u_darray *tmp_joint_indices = Vec4u_darray_new(1000);
  Vec4_darray *tmp_weights = Vec4_darray_new(1000);
  // FIXME
  // joint_darray *tmp_joints = joint_darray_new(256);
  // vertex_bone_data_darray *tmp_vertex_bone_data = vertex_bone_data_darray_new(1000);

  cgltf_options options = { 0 };
  cgltf_data *data = NULL;
  cgltf_result result = cgltf_parse_file(&options, filepath, &data);
  if (result != cgltf_result_success) {
    WARN("gltf load failed");
    // TODO: cleanup arrays(allocate all from arena ?)
    return false;
  }

  cgltf_load_buffers(&options, data, filepath);
  DEBUG("loaded buffers");

  //   // --- Skin
  //   size_t num_skins = data->skins_count;
  //   bool is_skinned = false;
  //   if (num_skins == 1) {
  //     is_skinned = true;
  //   } else if (num_skins > 1) {
  //     WARN("GLTF files with more than 1 skin are not supported");
  //     return false;
  //   }

  //   if (is_skinned) {
  //     cgltf_skin *gltf_skin = data->skins;
  //     DEBUG("loading skin %s", gltf_skin->name);
  //     size_t num_joints = gltf_skin->joints_count;
  //     DEBUG("# Joints %d", num_joints);

  //     cgltf_accessor *gltf_inverse_bind_matrices = gltf_skin->inverse_bind_matrices;

  //     // for each one we'll spit out a joint
  //     for (size_t i = 0; i < num_joints; i++) {
  //       cgltf_node *joint_node = gltf_skin->joints[i];

  //       joint joint_i = { .name = "testjoint" };
  //       if (joint_node->children_count > 0 && !joint_node->has_translation &&
  //           !joint_node->has_rotation) {
  //         WARN("joint Node with index %d is the root node", i);
  //         joint_i.transform_components = TRANSFORM_DEFAULT;
  //       } else {
  //         TRACE("Storing joint transform");
  //         joint_i.transform_components = TRANSFORM_DEFAULT;
  //         if (joint_node->has_translation) {
  //           memcpy(&joint_i.transform_components.position, &joint_node->translation, 3 *
  //           sizeof(f32));
  //         }
  //         if (joint_node->has_rotation) {
  //           memcpy(&joint_i.transform_components.rotation, &joint_node->rotation, 4 *
  //           sizeof(f32));
  //         }
  //         // TODO: support scaling as vec instead of float
  //       }
  //       joint_i.local_transform = transform_to_mat(&joint_i.transform_components);
  //       cgltf_accessor_read_float(gltf_inverse_bind_matrices, i,
  //       &joint_i.inverse_bind_matrix.data[0],
  //                                 16);
  //       // joint_darray_push(tmp_joints, joint_i);
  //     }
  //   }

  // --- Materials
  size_t num_materials = data->materials_count;
  TRACE("Num materials %d", num_materials);
  for (size_t m = 0; m < num_materials; m++) {
    cgltf_material gltf_material = data->materials[m];
    cgltf_pbr_metallic_roughness pbr = gltf_material.pbr_metallic_roughness;

    Material our_material = PBRMaterialDefault();

    TRACE("Has PBR metallic roughness ");
    // we will use base color texture like blinn phong
    cgltf_texture_view albedo_tex_view = pbr.base_color_texture;  // albedo
    if (albedo_tex_view.texture != NULL) {
      char albedo_map_path[1024];
      snprintf(albedo_map_path, sizeof(albedo_map_path), "%s/%s", relative_path.buf,
               albedo_tex_view.texture->image->uri);
      our_material.albedo_map = TextureLoadFromFile(albedo_map_path);
    } else {
      WARN("GLTF model has no albedo map");
    }

    cgltf_texture_view metal_rough_tex_view = pbr.metallic_roughness_texture;
    if (metal_rough_tex_view.texture != NULL) {
      char metal_rough_map_path[1024];
      snprintf(metal_rough_map_path, sizeof(metal_rough_map_path), "%s/%s", relative_path.buf,
               metal_rough_tex_view.texture->image->uri);
      our_material.metallic_roughness_map = TextureLoadFromFile(metal_rough_map_path);
    } else {
      WARN("GLTF model has no metal/roughness map");
    }

    cgltf_texture_view normal_tex_view = gltf_material.normal_texture;
    if (normal_tex_view.texture != NULL) {
      char normal_map_path[1024];
      snprintf(normal_map_path, sizeof(normal_map_path), "%s/%s", relative_path.buf,
               normal_tex_view.texture->image->uri);
      our_material.normal_map = TextureLoadFromFile(normal_map_path);
    } else {
      WARN("GLTF model has no normal map");
    }

    // TextureHandle albedo_map = TextureLoadFromFile(albedo_map_path);
    // TextureHandle metal_roughness_map = TextureLoadFromFile(metal_rough_map_path);
    // TextureHandle normal_map = TextureLoadFromFile(normal_map_path);

    // Material our_material = {
    //   .kind = MAT_PBR,
    //   // .metal_roughness_combined = true,
    //   .albedo_map = albedo_map,
    //   .metallic_roughness_map = metal_roughness_map,
    //   .normal_map= normal_map,
    //   .ambient_occlusion_map = INVALID_TEX_HANDLE,

    // };

    // our_material.name = malloc(strlen(gltf_material.name) + 1);
    u32 string_length = strlen(gltf_material.name) + 1;
    assert(string_length < 64);
    strcpy(our_material.name, gltf_material.name);

    Material_darray_push(out_model->materials, our_material);
  }

  // --- Meshes
  size_t num_meshes = data->meshes_count;
  TRACE("Num meshes %d", num_meshes);
  for (size_t m = 0; m < num_meshes; m++) {
    cgltf_primitive primitive = data->meshes[m].primitives[0];
    DEBUG("Found %d attributes", primitive.attributes_count);

    for (cgltf_size a = 0; a < data->meshes[m].primitives[0].attributes_count; a++) {
      cgltf_attribute attribute = data->meshes[m].primitives[0].attributes[a];
      if (attribute.type == cgltf_attribute_type_position) {
        cgltf_accessor *accessor = attribute.data;
        load_position_components(tmp_positions, accessor);
      } else if (attribute.type == cgltf_attribute_type_normal) {
        cgltf_accessor *accessor = attribute.data;
        load_normal_components(tmp_normals, accessor);
      } else if (attribute.type == cgltf_attribute_type_texcoord) {
        cgltf_accessor *accessor = attribute.data;
        load_texcoord_components(tmp_uvs, accessor);
      } else if (attribute.type == cgltf_attribute_type_joints) {
        // FIXME: joints
        // TRACE("Load joint indices from accessor");
        // cgltf_accessor *accessor = attribute.data;
        // assert(accessor->component_type == cgltf_component_type_r_16u);
        // assert(accessor->type == cgltf_type_vec4);
        // vec4u joint_indices;
        // vec4 joints_as_floats;
        // for (cgltf_size v = 0; v < accessor->count; ++v) {
        //   cgltf_accessor_read_float(accessor, v, &joints_as_floats.x, 4);
        //   joint_indices.x = (u32)joints_as_floats.x;
        //   joint_indices.y = (u32)joints_as_floats.y;
        //   joint_indices.z = (u32)joints_as_floats.z;
        //   joint_indices.w = (u32)joints_as_floats.w;
        //   printf("Joints affecting vertex %d :  %d %d %d %d\n", v, joint_indices.x,
        //   joint_indices.y,
        //          joint_indices.z, joint_indices.w);
        //   vec4u_darray_push(tmp_joint_indices, joint_indices);
        // }

      } else if (attribute.type == cgltf_attribute_type_weights) {
        // FIXME: weights
        // TRACE("Load joint weights from accessor");
        // cgltf_accessor *accessor = attribute.data;
        // assert(accessor->component_type == cgltf_component_type_r_32f);
        // assert(accessor->type == cgltf_type_vec4);

        // for (cgltf_size v = 0; v < accessor->count; ++v) {
        //   vec4 weights;
        //   cgltf_accessor_read_float(accessor, v, &weights.x, 4);
        //   printf("Weights affecting vertex %d : %f %f %f %f\n", v, weights.x, weights.y,
        //   weights.z,
        //          weights.w);
        //   vec4_darray_push(tmp_weights, weights);
        // }
      } else {
        WARN("Unhandled cgltf_attribute_type: %s. skipping..", attribute.name);
      }
    }
    // mesh.vertex_bone_data = vertex_bone_data_darray_new(1);
    i32 mat_idx = -1;
    if (primitive.material != NULL) {
      DEBUG("Primitive Material %s", primitive.material->name);
      for (u32 i = 0; i < Material_darray_len(out_model->materials); i++) {
        printf("%s vs %s \n", primitive.material->name, out_model->materials->data[i].name);
        if (strcmp(primitive.material->name, out_model->materials->data[i].name) == 0) {
          INFO("Found material");
          mat_idx = i;
          // mesh.material_index = i;
          break;
        }
      }
    }

    TRACE("Vertex data has been loaded");

    //     // FIXME
    //     // if (is_skinned) {
    //     //   mesh.is_skinned = true;
    //     //   // mesh.vertex_bone_data = vertex_bone_data_darray_new(tmp_joint_indices->len);
    //     //   mesh.bones = joint_darray_new(tmp_joints->len);
    //     //   for (int i = 0; i < tmp_joint_indices->len; i++) {
    //     //     vertex_bone_data data;
    //     //     data.joints = tmp_joint_indices->data[i];
    //     //     data.weights = tmp_weights->data[i];
    //     //     vertex_bone_data_darray_push(tmp_vertex_bone_data,
    //     //                                  data);  // Push the temp data that aligns with raw
    //     vertices
    //     //   }
    //     //   for (int i = 0; i < tmp_joints->len; i++) {
    //     //     joint data = tmp_joints->data[i];
    //     //     joint_darray_push(mesh.bones, data);
    //     //   }
    //     // }

    bool has_indices = false;
    Vertex_darray *geo_vertices = Vertex_darray_new(3);
    u32_darray *geo_indices = u32_darray_new(0);

    // Store vertices
    printf("Positions %d Normals %d UVs %d\n", tmp_positions->len, tmp_normals->len, tmp_uvs->len);
    assert(tmp_positions->len == tmp_normals->len);
    assert(tmp_normals->len == tmp_uvs->len);
    for (u32 v_i = 0; v_i < tmp_positions->len; v_i++) {
      Vertex v = { .static_3d = {
                       .position = tmp_positions->data[v_i],
                       .normal = tmp_normals->data[v_i],
                       .tex_coords = tmp_uvs->data[v_i],
                   } };
      Vertex_darray_push(geo_vertices, v);
    }

    // Store indices
    cgltf_accessor *indices = primitive.indices;
    if (primitive.indices > 0) {
      WARN("indices! %d", indices->count);
      has_indices = true;

      // store indices
      for (cgltf_size i = 0; i < indices->count; ++i) {
        cgltf_uint ei;
        cgltf_accessor_read_uint(indices, i, &ei, 1);
        u32_darray_push(geo_indices, ei);
      }

      // fetch and store vertices for each index
      // for (cgltf_size i = 0; i < indices->count; ++i) {
      //   Vertex vert;
      //   cgltf_uint index = mesh.indices[i];
      //   vert.position = tmp_positions->data[index];
      //   vert.normal = tmp_normals->data[index];
      //   vert.uv = tmp_uvs->data[index];
      //   vertex_darray_push(mesh.vertices, vert);

      // if (is_skinned) {
      //   vertex_bone_data vbd = tmp_vertex_bone_data->data[index];  // create a copy
      //   vertex_bone_data_darray_push(mesh.vertex_bone_data, vbd);
      // }
      // for each vertex do the bone data
      // }
      // } else {
      // has_indices = false;
      // return false;  // TODO: handle this
      // }

      Geometry *geometry = malloc(sizeof(Geometry));
      geometry->format = VERTEX_STATIC_3D;
      geometry->has_indices = true;
      geometry->vertices = geo_vertices;
      geometry->indices = geo_indices;
      // geometry->format = VERTEX_STATIC_3D;
      // geometry->colour = (rgba){ 1, 1, 1, 1 };
      // geometry->vertices = geo_vertices;
      // geometry->indices = geo_indices;
      // geometry->has_indices = has_indices;

      // mesh m = mesh_create(geometry, true);
      // m.material_index = (u32_opt){ .has_value = mat_idx == 9999, .value = mat_idx };

      Mesh m = Mesh_Create(geometry, false);
      m.material_index = mat_idx;
      Mesh_darray_push(out_model->meshes, m);
    }

    //     // clear data for each mesh
    //     vec3_darray_clear(tmp_positions);
    //     vec3_darray_clear(tmp_normals);
    //     vec2_darray_free(tmp_uvs);
    //     vec4u_darray_clear(tmp_joint_indices);
    //     vec4_darray_clear(tmp_weights);
    //     joint_darray_clear(tmp_joints);
    //   }

    //   for (int i = 0; i < out_model->meshes->len; i++) {
    //     u32 mat_idx = out_model->meshes->data[i].material_index;
    //     printf("Mesh %d Mat index %d Mat name %s\n", i, mat_idx,
    //            out_model->materials->data[mat_idx].name);
    //   }

    //   // Animations
    //   TRACE("Num animations %d", data->animations_count);
    //   size_t num_animations = data->animations_count;
    //   if (num_animations > 0) {
    // // Create an arena for all animation related data
    // #define ANIMATION_STORAGE_ARENA_SIZE (1024 * 1024 * 1024)
    //     char *animation_backing_storage = malloc(ANIMATION_STORAGE_ARENA_SIZE);
    //     // We'll store data on this arena so we can easily free it all at once later
    //     out_model->animation_data_arena =
    //         arena_create(animation_backing_storage, ANIMATION_STORAGE_ARENA_SIZE);
    //     arena *arena = &out_model->animation_data_arena;

    //     if (!out_model->animations) {
    //       out_model->animations = animation_clip_darray_new(num_animations);
    //     }

    //     for (int anim_idx = 0; anim_idx < data->animations_count; anim_idx++) {
    //       cgltf_animation animation = data->animations[anim_idx];
    //       animation_clip clip = { 0 };

    //       for (size_t c = 0; c < animation.channels_count; c++) {
    //         cgltf_animation_channel channel = animation.channels[c];

    //         animation_sampler *sampler = arena_alloc(arena, sizeof(animation_sampler));

    //         animation_sampler **target_property;
    //         keyframe_kind data_type;

    //         switch (channel.target_path) {
    //           case cgltf_animation_path_type_rotation:
    //             target_property = &clip.rotation;
    //             data_type = KEYFRAME_ROTATION;
    //             break;
    //           case cgltf_animation_path_type_translation:
    //             target_property = &clip.translation;
    //             data_type = KEYFRAME_TRANSLATION;
    //             break;
    //           case cgltf_animation_path_type_scale:
    //             target_property = &clip.scale;
    //             data_type = KEYFRAME_SCALE;
    //             break;
    //           case cgltf_animation_path_type_weights:
    //             target_property = &clip.weights;
    //             data_type = KEYFRAME_WEIGHTS;
    //             WARN("Morph target weights arent supported yet");
    //             return false;
    //           default:
    //             WARN("unsupported animation type");
    //             return false;
    //         }
    //         *target_property = sampler;

    //         sampler->current_index = 0;
    //         printf("1 %d index\n", sampler->current_index);
    //         sampler->animation.interpolation = INTERPOLATION_LINEAR;

    //         // keyframe times
    //         size_t n_frames = channel.sampler->input->count;
    //         assert(channel.sampler->input->component_type == cgltf_component_type_r_32f);
    //         // FIXME: CASSERT_MSG function "Expected animation sampler input component to be
    //         type f32
    //         // (keyframe times)");
    //         f32 *times = arena_alloc(arena, n_frames * sizeof(f32));
    //         sampler->animation.n_timestamps = n_frames;
    //         sampler->animation.timestamps = times;
    //         cgltf_accessor_unpack_floats(channel.sampler->input, times, n_frames);

    //         assert_path_type_matches_component_type(channel.target_path,
    //         channel.sampler->output);

    //         // keyframe values
    //         size_t n_values = channel.sampler->output->count;
    //         assert(n_frames == n_values);

    //         keyframes keyframes = { 0 };
    //         keyframes.kind = KEYFRAME_ROTATION;
    //         keyframes.count = n_values;
    //         keyframes.values = arena_alloc(arena, n_values * sizeof(keyframe));
    //         for (cgltf_size v = 0; v < channel.sampler->output->count; ++v) {
    //           switch (data_type) {
    //             case KEYFRAME_ROTATION: {
    //               quat rot;
    //               cgltf_accessor_read_float(channel.sampler->output, v, &rot.x, 4);
    //               // printf("Quat %f %f %f %f\n", rot.x, rot.y, rot.z, rot.w);
    //               keyframes.values[v].rotation = rot;
    //               break;
    //             }
    //             case KEYFRAME_TRANSLATION: {
    //               vec3 trans;
    //               cgltf_accessor_read_float(channel.sampler->output, v, &trans.x, 3);
    //               keyframes.values[v].translation = trans;
    //               break;
    //             }
    //             case KEYFRAME_SCALE: {
    //               vec3 scale;
    //               cgltf_accessor_read_float(channel.sampler->output, v, &scale.x, 3);
    //               keyframes.values[v].scale = scale;
    //               break;
    //             }
    //             case KEYFRAME_WEIGHTS: {
    //               // TODO
    //               break;
    //             }
    //           }
    //         }
    //         sampler->animation.values = keyframes;

    //         sampler->min = channel.sampler->input->min[0];
    //         sampler->max = channel.sampler->input->max[0];

    //         // clip.rotation = sampler;
    //         // printf("%d timestamps\n", sampler->animation.n_timestamps);
    //         // printf("%d index\n", sampler->current_index);
    //       }

    //       WARN("stuff %ld", clip.rotation->animation.n_timestamps);
    //       animation_clip_darray_push(out_model->animations, clip);
    //     }
  }

  return true;
}

/*
bool model_load_gltf(const char *path, model *out_model) {
  TRACE("Load GLTF %s", path);

  // Setup temp arrays
  kitc_darray *tmp_positions = kitc_darray_new(sizeof(vec3), 1000);
  kitc_darray *tmp_normals = kitc_darray_new(sizeof(vec3), 1000);
  kitc_darray *tmp_uvs = kitc_darray_new(sizeof(vec2), 1000);

  // may as well just init with max capacity as we're just gonna free at end of this function
anyway bh_material_darray *materials = bh_material_darray_new(MAX_MATERIALS);
  CASSERT(materials->len == 0);

  cgltf_options options = {0};
  cgltf_data *data = NULL;
  cgltf_result result = cgltf_parse_file(&options, path, &data);
  if (result == cgltf_result_success) {
    DEBUG("gltf loaded succesfully");

    cgltf_load_buffers(&options, data, path);
    DEBUG("loaded buffers");

    // -- Load materials.
    // Each mesh will be handed a material
    TRACE("Num materials %d", data->materials_count);
    out_model->num_materials = data->materials_count;

    for (int m = 0; m < data->materials_count; m++) {
      cgltf_material gltf_material = data->materials[m];
      bh_material our_material = {0};

      str8 name = str8_copy(gltf_material.name);
      printf("Material name %s\n", name.buf);
      our_material.name = name;

      cgltf_pbr_metallic_roughness pbr = gltf_material.pbr_metallic_roughness;
      if (gltf_material.has_pbr_metallic_roughness) {
        // we will use base color texture like blinn phong
        cgltf_texture_view diff_tex = pbr.base_color_texture;
        strcpy(our_material.diffuse_tex_path, diff_tex.texture->image->uri);
      }

      bh_material_darray_push(materials, our_material);
    }

    // -- Load animations.
    TRACE("Num animations %d", data->animations_count);
    out_model->num_animations = data->animations_count;
    for (int anim_idx = 0; anim_idx < data->animations_count; anim_idx++) {
      cgltf_animation animation = data->animations[anim_idx];
      animation_clip our_animation = {0};

      // loop through each channel (track)
      for (int c = 0; c < animation.channels_count; c++) {
        // each channel (track) has a target and a sampler
        // for the time being we assume the target is the model itself
        cgltf_animation_channel channel = animation.channels[c];
        animation_track our_track = {0};
        our_track.interpolation = interpolation_fn_from_gltf(channel.sampler->interpolation);
        our_track.property = anim_prop_from_gltf(channel.target_path);

        // get the actual data out via the "accessor"
        // input will be the times

        // Keyframe times
        size_t n_frames = channel.sampler->input->count;
        our_track.num_keyframes = n_frames;
        f32 *times = malloc(sizeof(f32) * n_frames);
        our_track.keyframe_times = times;
        CASSERT_MSG(channel.sampler->input->component_type == cgltf_component_type_r_32f,
                    "Expected animation sampler input component to be type f32 (keyframe times)");
        cgltf_accessor_unpack_floats(channel.sampler->input, times,
channel.sampler->input->count);

        // printf("keyframe times[\n");
        // for (int i = 0; i < n_frames; i++) {
        //   printf("  %f\n", times[i]);
        // }
        // printf("]\n");

        // Data!
        if (channel.target_path == cgltf_animation_path_type_rotation) {
          CASSERT(channel.sampler->output->component_type == cgltf_component_type_r_32f);
          CASSERT(channel.sampler->output->type == cgltf_type_vec4);
        }

        our_track.keyframes = malloc(sizeof(keyframe_data) * n_frames);
        for (cgltf_size v = 0; v < channel.sampler->output->count; ++v) {
          quat rot;
          cgltf_accessor_read_float(channel.sampler->output, v, &rot.x, 4);
          // vectors[v] = rot;
          // printf("Quat %f %f %f %f\n", rot.x, rot.y, rot.z, rot.w);
          our_track.keyframes[v].rotation = rot;
        }

        our_track.min_time = channel.sampler->input->min[0];
        our_track.max_time = channel.sampler->input->max[0];

        // printf("min time: %f max time %f\n", our_track.min_time, our_track.max_time);

        animation_track_darray_push(&our_animation.tracks, our_track);
      }

      out_model->animations[anim_idx] = our_animation;
    }

    // Load meshes
    TRACE("Num meshes %d", data->meshes_count);
    out_model->num_meshes = data->meshes_count;

    for (int m = 0; m < data->meshes_count; m++) {
      // at the moment we only handle one primitives per mesh
      // CASSERT(data->meshes[m].primitives_count == 1);

      // Load vertex data from FIRST primitive only
      cgltf_primitive primitive = data->meshes[m].primitives[0];
      DEBUG("Found %d attributes", primitive.attributes_count);
      for (int a = 0; a < data->meshes[m].primitives[0].attributes_count; a++) {
        cgltf_attribute attribute = data->meshes[m].primitives[0].attributes[a];
        if (attribute.type == cgltf_attribute_type_position) {
          TRACE("Load positions from accessor");

          cgltf_accessor *accessor = attribute.data;
          CASSERT(accessor->component_type == cgltf_component_type_r_32f);
          CASSERT_MSG(accessor->type == cgltf_type_vec3, "Vertex positions should be a vec3");

          for (cgltf_size v = 0; v < accessor->count; ++v) {
            vec3 pos;
            cgltf_accessor_read_float(accessor, v, &pos.x, 3);
            kitc_darray_push(tmp_positions, &pos);
          }

        } else if (attribute.type == cgltf_attribute_type_normal) {
          TRACE("Load normals from accessor");

          cgltf_accessor *accessor = attribute.data;
          CASSERT(accessor->component_type == cgltf_component_type_r_32f);
          CASSERT_MSG(accessor->type == cgltf_type_vec3, "Normal vectors should be a vec3");

          for (cgltf_size v = 0; v < accessor->count; ++v) {
            vec3 pos;
            cgltf_accessor_read_float(accessor, v, &pos.x, 3);
            kitc_darray_push(tmp_normals, &pos);
          }

        } else if (attribute.type == cgltf_attribute_type_texcoord) {
          TRACE("Load texture coordinates from accessor");
          cgltf_accessor *accessor = attribute.data;
          CASSERT(accessor->component_type == cgltf_component_type_r_32f);
          CASSERT_MSG(accessor->type == cgltf_type_vec2, "Texture coordinates should be a vec2");

          for (cgltf_size v = 0; v < accessor->count; ++v) {
            vec2 tex;
            bool success = cgltf_accessor_read_float(accessor, v, &tex.x, 2);
            if (!success) {
              ERROR("Error loading tex coord");
            }
            kitc_darray_push(tmp_uvs, &tex);
          }
        } else if (attribute.type == cgltf_attribute_type_joints) {
          // handle joints

        } else {
          WARN("Unhandled cgltf_attribute_type: %s. skipping..", attribute.name);
        }
      }

      // Create mesh
      mesh mesh;
      mesh.vertices =
          kitc_darray_new(sizeof(mesh_vertex), data->meshes[m].primitives[0].attributes_count);

      // Flatten faces from indices if present otherwise push vertices verbatim
      cgltf_accessor *indices = primitive.indices;
      if (primitive.indices > 0) {
        mesh.has_indices = true;

        kitc_darray *element_indexes = kitc_darray_new(sizeof(cgltf_uint), indices->count);
        TRACE("Indices count %ld\n", indices->count);
        for (cgltf_size i = 0; i < indices->count; ++i) {
          cgltf_uint ei;
          cgltf_accessor_read_uint(indices, i, &ei, 1);
          kitc_darray_push(element_indexes, &ei);
        }

        kitc_darray_iter indices_iter = kitc_darray_iter_new(element_indexes);
        cgltf_uint *cur;
        while ((cur = kitc_darray_iter_next(&indices_iter))) {
          mesh_vertex vert;
          memcpy(&vert.position, &((vec3 *)tmp_positions->data)[*cur], sizeof(vec3));
          memcpy(&vert.normal, &((vec3 *)tmp_normals->data)[*cur], sizeof(vec3));
          memcpy(&vert.tex_coord, &((vec2 *)tmp_uvs->data)[*cur], sizeof(vec2));
          kitc_darray_push(mesh.vertices, &vert);
          // mesh_vertex_debug_print(vert);
        }
        // printf("indices: %ld, positions: %ld\n", kitc_darray_len(element_indexes),
        kitc_darray_free(element_indexes);
      } else {
        mesh.has_indices = false;

        bool calc_normals = false;
        if (kitc_darray_len(tmp_normals) == 0) {
          TRACE("No normals data is present. Normals will be calculated for you.");
          calc_normals = true;
        }
        for (int v = 0; v < kitc_darray_len(tmp_positions); v++) {
          mesh_vertex vert;
          memcpy(&vert.position, &((vec3 *)tmp_positions->data)[v], sizeof(vec3));
          if (!calc_normals) {
            memcpy(&vert.normal, &((vec3 *)tmp_normals->data)[v], sizeof(vec3));
          }
          memcpy(&vert.tex_coord, &((vec2 *)tmp_uvs->data)[v], sizeof(vec2));
          kitc_darray_push(mesh.vertices, &vert);
        }

        if (calc_normals) {
          if (mesh.has_indices) {
            // generate_normals_nonindexed(mesh.vertices);
          } else {
            generate_normals_nonindexed(mesh.vertices);
          }
        }
      }

      // Material
      if (primitive.material != NULL) {
        for (int i = 0; i < bh_material_darray_len(materials); i++) {
          if (strcmp(primitive.material->name, cstr(materials->data->name))) {
            TRACE("Found material");
            mesh.material_index = i;
            break;
          }
        }
      }

      // mesh.material_index = 0;  // TODO: make sure DEFAULT_MATERIAL is added at material index
0
      // TODO: material handling
      mesh.material_index = bh_material_darray_len(materials) - 1;

      calc_mesh_bounding_box(&mesh);
      // out_model->meshes.data[m] = mesh;
      mesh_darray_push(&out_model->meshes, mesh);

      kitc_darray_clear(tmp_positions);
      kitc_darray_clear(tmp_normals);
      kitc_darray_clear(tmp_uvs);
    }
    // End Load meshes

    // Load animations
    DEBUG("Num animations %d", data->animations_count);
    out_model->num_animations = data->animations_count;

    // End Load animations

    cgltf_free(data);
  } else {
    ERROR("Load failed");
    kitc_darray_free(tmp_positions);
    kitc_darray_free(tmp_normals);
    kitc_darray_free(tmp_uvs);
    return false;
  }

  for (int i = 0; i < materials->len; i++) {
    out_model->materials[i] = materials->data[i];
  }

  calc_model_bounding_box(out_model);

  DEBUG("Num meshes %d", out_model->num_meshes);
  DEBUG("Num materials %d", out_model->num_materials);
  DEBUG("Num animations %d", out_model->num_animations);

  CASSERT(out_model->num_materials == 1);

  kitc_darray_free(tmp_positions);
  kitc_darray_free(tmp_normals);
  kitc_darray_free(tmp_uvs);
  bh_material_darray_free(materials);

  TRACE("Finished loading GLTF");
  return true;
}
*/